A thermodynamic model for evaluation of mass action concentrations of Ce₂O₃-contained slag systems based on the ion and molecule coexistence theory Chengchuan WU, Guoguang CHENG, Hu LONG and Xiaohong YANG School of Metallurgical and Ecological Engineering, University of Science and technology Beijing, Beijing 100083, China Abstract: According to the ion and molecule coexistence theory (IMCT) for molten slags and corresponding phase diagrams, a thermodynamic model for the evaluation of mass action concentrations (designated by N_i for structure unit i) for Ce_2O_3 - Al_2O_3 , CaO- Al_2O_3 - Ce_2O_3 and CaO- Al_2O_3 - SiO_2 - Ce_2O_3 slag systems has been formulated. The results show that when the mole fraction of Ce_2O_3 is at 0.49 in the binary slag, the mass action concentration of Ce_2O_3 • Al_2O_3 achieves its maximum value 0.90. In a composition area of CaO/Al_2O_3 (mass fraction ratio) from 0.7 to 1.5 and Ce_2O_3 content (mass fraction) from 0 to 45% of the ternary slag at 1773K, the results show that trends of calculated $N_{Al_2O_3}$ are in good agreement with reported measured trends of $a_{Al_2O_3}$. The iso-curves of $N_{Ce_2O_3}$ and N_{CaO} are also drawn from the calculated results. The thermodynamic model application to the equilibrium between 55.83%CaO-23%Al₂O₃-11.17%SiO₂- 10%Ce₂O₃ quaternary slag and molten steel containing aluminum has been further discussed. Results indicate that certain content of Ce would be dissolved in steel, which increases with the increasing of temperature and aluminum content, and when the aluminum content is 0.02%, the corresponding cerium content is in the range of 1.87 to 13.30ppm at 1873K. In summary, using Ce_2O_3 to replace Al_2O_3 can effectively reduce $N_{Al_2O_3}$, certain content of Ce can dissolved in steel. **Keywords:** CaO-Al₂O₃-Ce₂O₃, CaO-Al₂O₃-SiO₂-Ce₂O₃, coexistence theory, mass action concentration, thermodynamic model ### 1. Introduction In Al-killed steel, Al_2O_3 is one of the main inclusions which deteriorate steel performance as well as result in the submerged entry nozzle clogging during continuous casting ^[1]. In the process of steel refining, these harmful Al_2O_3 inclusions can be removed by the absorption of the molten covering slag and are also usually modified to form low melting complex inclusions to reduce the harmfulness of alumina inclusions. Studies have shown that reducing the activity of Al₂O₃ and improve the fluidity properties of refining slag can effectively promote the refining slag absorption ability for Al₂O₃ inclusions ^[2, 3]. Shigeru UEDA et al. ^[4] have found that the activity coefficient of Al₂O₃ decreases with the increasing concentration of Ce₂O₃ to the CaO-Al₂O₃-Ce₂O₃ system. In addition, the equilibrium of refining slag containing Ce₂O₃ and molten steel containing Al would have a small amount of Ce dissolved in steel ^[5] which plays an important role in the modification of fine Al₂O₃ inclusions and micro-alloying in steel. Long Hu et al. ^[6] investigated on the melting and fluidity properties of refining slag containing Ce₂O₃. They have found that the high basicity refining slag with appropriate content of Ce₂O₃ has good melting and fluidity properties. The above investigations show that the activity of Al_2O_3 in the slag is reduced with the addition of Ce_2O_3 to traditional refining slag used for absorption Al_2O_3 inclusions, as a result of formation of $xCe_2O_3 \cdot yAl_2O_3$ compounds. Meanwhile the equilibrium between refining slag containing Ce_2O_3 and molten steel containing Al would have certain Ce dissolved in steel. Therefore, it is of great significance that the research on Al₂O₃-Ce₂O₃, CaO-Al₂O₃-Ce₂O₃ and CaO-Al₂O₃-SiO₂-Ce₂O₃ slags which attained from the addition of Ce₂O₃ to traditional refining slags (CaO-Al₂O₃, CaO-Al₂O₃-SiO₂). At present, only Shigeru UEDA et al. ^[4] have measured the activity of Al₂O₃ in CaO-Al₂O₃-Ce₂O₃ ternary system at 1773 K. Enough detailed data, systematic research and the thermodynamic calculation model of the Ce₂O₃-contained slag have not yet been reported in the literature so far. In the present work, according to the ion and molecule coexistence theory (IMCT) of slag structure and corresponding phase diagrams, the thermodynamic model for the evaluation of mass action concentration for Ce₂O₃-Al₂O₃, CaO-Al₂O₃- Ce₂O₃ and CaO-Al₂O₃-SiO₂-Ce₂O₃ are formulated. Mass action concentrations of each structure units were gained with Matlab software. And the mass action concentration of Al₂O₃ was compared with reported experimental activity of Al₂O₃ in CaO-Al₂O₃-Ce₂O₃ slag system. Influencing factors of mass action concentration for Al₂O₃, Ce₂O₃ and CaO were investigated. On this basis, the equilibrium between CaO-Al₂O₃-SiO₂-Ce₂O₃ and steel was also calculated from the view point of thermodynamics to study the probability of reduction of Ce₂O₃ to metals by aluminum and the probability of modification of Al₂O₃ inclusions by the cerium reduced from Ce₂O₃ in Al-killed steel. The results will provide scientific basis for further study and exploitation on the application of rare earth oxides in steelmaking refining slag. ## 2. Thermodynamic model ## 2.1 Hypotheses According to the classic hypotheses of IMCT described in detail elsewhere ^[7], the main assumptions in the developed thermodynamic model for calculating the mass action concentrations of structural units or ion-pair inclusions in Ce₂O₃-Al₂O₃, CaO-Al₂O₃-Ce₂O₃ and CaO-Al₂O₃-SiO₂-Ce₂O₃ slags can be simply summarized as follows: - (a) Structural units in the studied slags are composed of Ca^{2+} , Ce^{3+} and O^{2-} as simple ions, SiO_2 and Al_2O_3 as simple molecules, silicates, and aluminates and so on as complex molecules. Each structural unit has its independent position in the slags. Every cation and anion generated from the same component will take part in reactions of forming complex molecules in the form of ion-pair as $(Ca^{2+}+O^{2-})$ or $(2Ce^{3+}+3O^{2-})$. - (b) Reactions of forming complex molecules are under chemically dynamic equilibrium between the generated ion-pair from simple ions and simple molecules by taking $(2Ce^{3+}+3O^{2-})$ and Al_2O_3 to form $Ce_2O_3\cdot Al_2O_3$ as an example as $(2Ce^{3+}+3O^{2-})+Al_2O_3=(Ce_2O_3\cdot Al_2O_3)$. - (c) Chemical reactions of forming complex molecules obey the mass action law. This implies that the chemical reaction equilibrium constant can be represented by the defined mass action concentrations in the following text. **Table 1** Expression of structural units, their mole numbers and mass action concentrations of Ce₂O₃-Al₂O₃, CaO-Al₂O₃-Ce₂O₃ and CaO-Al₂O₃-SiO₂-Ce₂O₃ slags at metallurgical temperature based on the ion and molecule coexistence theory. | Slag system | | | Structural units | No | Mole number of structural units | Mass action concentration | |--|--|--|--|----|---|--| | CaO-
Al ₂ O ₃ -
SiO ₂ -
Ce ₂ O ₃ | CaO-
Al ₂ O ₃ -
Ce ₂ O ₃ | Ce ₂ O ₃ -
Al ₂ O ₃ | 2Ce ³⁺ +3O ²⁻ | 2 | $n_2 = n_{Ce_2O_3}$ | $N_2 = 5n_2 / \sum n_i$ | | | | | Al ₂ O ₃ | 4 | $n_4 = n_{Al_2O_3}$ | $N_4 = n_4 / \sum n_i$ | | | | | Ce ₂ O ₃ ·Al ₂ O ₃ | 13 | $n_{13} = n_{Ce_2O_3 \bullet Al_2O_3}$ | $N_{13} = n_{13} / \sum n_i$ | | | | | Ce ₂ O ₃ ·11Al ₂ O ₃ | 14 | $n_{14} = n_{Ce_2O_3 \bullet 11Al_2O_3}$ | $N_{14} = n_{14} / \sum n_i$ | | | | | Ca ²⁺ +O ²⁻ | 1 | $n_1 = n_{CaO}$ | $N_1 = 2n_1 / \sum n_i$ | | | | | CaO·Al ₂ O ₃ | 5 | $n_5 = n_{CaO \bullet Al_2O_3}$ | $N_5 = n_5 / \sum n_i$ | | | | | CaO·2Al ₂ O ₃ | 6 | $n_6 = n_{CaO \bullet 2Al_2O_3}$ | $N_6 = n_6 / \sum n_i$ | | | | | CaO·6Al ₂ O ₃ | 7 | $n_7 = n_{CaO \bullet 6Al_2O_3}$ | $N_{\gamma} = n_{\gamma} / \sum n_{i}$ | | | | | 3CaO·Al₂O₃ | 8 | $n_8 = n_{3CaO \bullet Al_2O_3}$ | $N_8 = n_8 / \sum n_i$ | | | | | 12CaO·7Al ₂ O ₃ | 9 | $n_9 = n_{12CaO \bullet 7Al_2O_3}$ | $N_9 = n_9 / \sum n_i$ | | | | | SiO ₂ | 3 | $n_3 = n_{SiO_2}$ | $N_3 = n_3 / \sum n_i$ | | | | | CaO·SiO ₂ | 10 | $n_{10} = n_{CaO \bullet SiO_2}$ | $N_{10} = n_{10} / \sum n_i$ | | | | | 2CaO·SiO ₂ | 11 | $n_{11} = n_{2CaO \bullet SiO_2}$ | $N_{11} = n_{11} / \sum n_i$ | | | | | 3CaO·SiO₂ | 12 | $n_{12} = n_{3CaO \bullet SiO_2}$ | $N_{12} = n_{12} / \sum n_i$ | | | | | 2CaO·Al ₂ O ₃ ·SiO ₂ | 15 | $n_{15} = n_{2CaO \bullet Al_2O_3 \bullet SiO_2}$ | $N_{15} = n_{15} / \sum n_i$ | | | | | CaO·Al ₂ O ₃ ·2SiO ₂ | 16 | $n_{16} = n_{CaO \bullet Al_2O_3 \bullet 2SiO_2}$ | $N_{16} = n_{16} / \sum n_i$ | | | | | 3Al₂O₃·2SiO₂ | 17 | $n_{17} = n_{3Al_2O_3 \bullet 2SiO_2}$ | $N_{17} = n_{17} / \sum n_i$ | ## 2.2 Structural units in Ce₂O₃-Al₂O₃, CaO-Al₂O₃-Ce₂O₃ and CaO-Al₂O₃-SiO₂-Ce₂O₃ slags According to the reported binary phase diagram of Ce_2O_3 - Al_2O_3 slag ^[8], it can be reasonably obtained that there are two simple ions Ce^{3+} and O^{2-} , one simple molecule Al_2O_3 and two kinds of complex molecules $Ce_2O_3 \cdot Al_2O_3$ and $Ce_2O_3 \cdot 11Al_2O_3$, in the $Ce_2O_3 \cdot Al_2O_3$ slag, as listed in Table 1, at metallurgical temperature based on IMCT. Additionally, according to the ternary phase diagram of $CaO-Al_2O_3-Ce_2O_3$ slag ^[4], as compared with $Ce_2O_3-Al_2O_3$ slag, there were added one simple ion Ca^{2+} and five kinds of complex molecules, such as: $CaO\cdot Al_2O_3$, $CaO\cdot 2Al_2O_3$, $CaO\cdot 6Al_2O_3$, $3CaO\cdot Al_2O_3$ and $12CaO\cdot 7Al_2O_3$ in the $CaO-Al_2O_3-Ce_2O_3$ slag, as listed in Table 1, at refining temperature based on IMCT. From above mentioned hypotheses, it can be obviously deduced that there are three simple ions, including Ca^{2+} , Ce^{3+} and O^{2-} , and two simple molecules as SiO_2 and Al_2O_3 in $CaO-Al_2O_3$ - SiO_2 - Ce_2O_3 slag at metallurgical temperature with respect to the ion and molecule coexistence theory. According to the reported binary phase diagram of Ce_2O_3 - Al_2O_3 and Ce_2O_3 - SiO_2 [9,10] slags, ternary phase diagrams of $CaO-Al_2O_3$ - Ce_2O_3 and $CaO-Al_2O_3$ - SiO_2 slags [11], in a refining temperature range from 1873 K to 1973 K, 16 kinds of complex molecules such as: $CaO-Al_2O_3$, $CaO-2Al_2O_3$, $CaO-6Al_2O_3$ C $Ce_2O_3\cdot 11Al_2O_3$, $Ce_2Si_2O_7$, $Ce_{4.47}(SiO_4)_3O$, $CeSi_2O_5$, $2CaO\cdot Al_2O_3\cdot SiO_2$, $CaO\cdot Al_2O_3\cdot 2SiO_2$ and $3Al_2O_3\cdot 2SiO_2$, can be formed in $CaO-Al_2O_3-SiO_2-Ce_2O_3$ slag. However, the Gibbs free energy of three complex molecules among them such as: $Ce_2Si_2O_7$, $Ce_{4.47}(SiO_4)_3O$ and $CeSi_2O_5$ are unknown. Therefore, this model manly takes into account 13 kinds of complex molecules, as listed in Table 1. Finally, as listed in Table 1, the structural units of Ce_2O_3 -Al $_2O_3$, CaO-Al $_2O_3$ -Ce $_2O_3$ and CaO-Al $_2O_3$ -SiO $_2$ -Ce $_2O_3$ slag systems were determined, and the corresponding numbers are 4, 10 and 17, respectively. The total equilibrium mole number of all structural units can be expressed as $\sum n_i$ (mol). #### 2.3 Model formulation of mass action concentrations The components of molten slag were defined respectively as follows: $b_1 = \sum n_{CaO}$, $b_2 = n_{Ce_2O_3}$, $a_1 = n_{SiO_2}$, $a_2 = n_{Al_2O_3}$. The symbols of the mass action concentrations for all structure units were listed as following: $N_1 = N_{CaO}$, $N_2 = N_{Ce_2O_3}$, $N_3 = N_{SiO_2}$, $N_4 = N_{Al_2O_3}$, $N_5 = N_{CaO \bullet Al_2O_3}$, $N_6 = N_{CaO \bullet 2Al_2O_3}$, $N_7 = N_{CaO \bullet 6Al_2O_3}$, $N_8 = N_{3CaO \bullet Al_2O_3}$, $N_9 = N_{12CaO \bullet 7Al_2O_3}$, $N_{10} = N_{CaO \bullet SiO_2}$, $N_{11} = N_{2CaO \bullet SiO_2}$, $N_{12} = N_{3CaO \bullet SiO_2}$, $N_{13} = N_{Ce_2O_3 \bullet Al_2O_3}$, $N_{14} = N_{Ce_2O_3 \bullet 11Al_2O_3}$, $N_{15} = N_{2CaO \bullet Al_2O_3 \bullet SiO_2}$, $N_{16} = N_{CaO \bullet Al_2O_3 O \bullet 2SiO_2}$, $N_{17} = N_{3Al_2O_3 \bullet 2SiO_2}$. The chemical equations in the temperature range of $1600-1700^{\circ}$ C can be defined as follows [12, 13]: $$(Ca^{2+} + O^{2-})_{(s)} + Al_2O_{3(s)} = CaO \cdot Al_2O_{3(s)} \quad \Delta G^{\theta} = -18120 - 19.62T \quad N_5 = K_1 \cdot N_1 \cdot N_2$$ (1) $$\left(\text{Ca}^{2+} + \text{O}^{2-}\right)_{(s)} + 2\text{A}l_2O_{3(s)} = \text{CaO} \cdot 2\text{A}l_2O_{3(s)} \quad \Delta G^{\theta} = -16400 - 26.8T \quad N_6 = K_2 \cdot N_1 \cdot N_2^2$$ (2) $$(\text{Ca}^{2+} + \text{O}^{2-})_{(s)} + 6\text{Al}_2\text{O}_{3(s)} = \text{CaO} \cdot 6\text{Al}_2\text{O}_{3(s)} \qquad \Delta G^{\theta} = -17430 - 37.2T \qquad N_7 = K_3 \cdot N_1 \cdot N_2^6$$ (3) $$3(\text{Ca}^{2+} + \text{O}^{2-})_{(s)} + \text{Al}_2\text{O}_{3(s)} = 3\text{CaO} \cdot \text{Al}_2\text{O}_{3(s)} \quad \Delta G^{\theta} = -17000 - 32.0T \quad N_8 = K_4 \cdot N_1^3 \cdot N_2 \tag{4}$$ $$12(\text{Ca}^{2^{+}} + \text{O}^{2^{-}})_{(s)} + 7\text{Al}_{2}\text{O}_{3(s)} = 12\text{Ca}\text{O} \cdot 7\text{Al}_{2}\text{O}_{3(s)} \quad \Delta G^{\theta} = -86100 - 205.1T \quad N_{9} = K_{5} \cdot N_{1}^{12} \cdot N_{2}^{7}$$ (5) $$(\text{Ca}^{2+} + \text{O}^{2-})_{(s)} + \text{SiO}_{2(s)} = \text{CaO} \cdot \text{SiO}_{2(s)} \quad \Delta G^{\theta} = -81416 - 10.498T \quad N_{10} = K_6 \cdot N_1 \cdot N_3$$ (6) $$2(\text{Ca}^{2+} + \text{O}^{2-})_{(s)} + \text{SiO}_{2(s)} = 2\text{CaO} \cdot \text{SiO}_{2(s)} \quad \Delta G^{\theta} = -160431 + 4.016T \quad N_{11} = K_7 \cdot N_1^2 \cdot N_3$$ (7) $$3(\text{Ca}^{2+} + \text{O}^{2-})_{(s)} + \text{SiO}_{2(s)} = 3\text{CaO} \cdot \text{SiO}_{2(s)} \quad \Delta G^{\theta} = -93366 - 23.03T \quad N_{12} = K_8 \cdot N_1^3 \cdot N_3$$ (8) $$\left(2Ce^{3+} + 3O^{2-}\right)_{(s)} + Al_2O_{3(s)} = Ce_2O_3 \cdot Al_2O_{3(s)} \quad \Delta G^{\theta} = -58555.5 - 15.04T \qquad N_{13} = K_9 \cdot N_2 \cdot N_4$$ (9) $$(2Ce^{3+} + 3O^{2-})_{(s)} + 11Al_2O_{3(s)} = Ce_2O_3 \cdot 11Al_2O_{3(s)} \quad \Delta G^{\theta} = 49323 - 80.56T \qquad N_{14} = K_{10} \cdot N_2 \cdot N_4^{11}$$ (10) $$(\text{Ca}^{2^{+}} + \text{O}^{2^{-}})_{(\text{s})} + \text{Al}_{2}\text{O}_{3(\text{s})} + 2\text{SiO}_{2(\text{s})} = \text{CaO} \cdot \text{Al}_{2}\text{O}_{3} \cdot 2\text{SiO}_{2(\text{s})} \ \Delta G^{\theta} = -13816.4 - 55.23T \ N_{15} = K_{11} \cdot N_{1} \cdot N_{2} \cdot N_{3}^{2} \ (11) + 2\text{CaO} \cdot \text{O}_{1} \cdot \text{O}_{1} \cdot \text{O}_{2} \cdot$$ $$2(\text{Ca}^{2+} + \text{O}^{2-})_{(s)} + \text{Al}_2\text{O}_{3(s)} + \text{SiO}_{2(s)} = 2\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot \text{SiO}_{2(s)} \quad \Delta G^{\theta} = -61964.6 - 60.29T \quad N_{16} = K_{12} \cdot N_1^2 \cdot N_2 \cdot N_3 \quad (12) + 2 \text{O}_{16} \cdot N_2^2 \cdot N_3 \cdot N_3 \quad (12) + 2 \text{O}_{16} \cdot N_2^2 \cdot N_3 \cdot$$ $$3\text{Al}_2\text{O}_{3(\text{s})} + 2\text{SiO}_{2(\text{s})} = 3\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_{2(\text{s})} \quad \Delta G^\theta = -4351 - 10.46T \ J/mol \qquad N_{17} = K_{13} \cdot N_2^3 \cdot N_3^2 \tag{13}$$ The equilibrium constant K_i^{θ} of the all reactions can be calculated by $K_i^{\theta} = \exp(-\Delta_r G_{m,i}^{\theta}/RT)$. ## 2.3.1 Ce₂O₃-Al₂O₃ slag system The total equilibrium mole number of all structural units in Ce_2O_3 -Al $_2O_3$ slags can be expressed as $\sum n_i = 5n_2 + n_4 + n_{13} + n_{14} \pmod{0}.$ The mass action concentration of the structural unit is defined as a ratio of the equilibrium mole number of structural unit i to the total equilibrium mole numbers of all structural units according to IMCT, and all structural units in the form of simple ions, simple molecules, and complex molecules can be calculated by $N_i = \frac{n_i}{\sum n_i}$. The $N_{Me_2O_3}$ such as ion- $$\text{pair (2Me}^{3+} + 3\text{O}^{2-}), \text{ should be calculated by } N_{MeO} = N_{Me^{2+}, MeO} + N_{O^{2-}, MeO} = \frac{2n_{Me^{3+}, MeO} + 3n_{O^{2-}, MeO}}{\sum n_i} = \frac{5n_{MeO}}{\sum n_i}$$ Mass equilibrium formulas were listed below: $$b_2 = \sum n \cdot (0.2N_2 + N_{13} + N_{14}) \tag{14}$$ $$a_2 = \sum n \cdot (N_4 + N_{13} + 11N_{14}) \tag{15}$$ $$N_2 + N_4 + N_{13} + N_{14} = 1 ag{16}$$ Therefore, the equation(9), (10) and (14)-(16) are the governing equations of the developed thermodynamic model for calculating mass action concentrations N_i of structural units or ion couples in the Ce_2O_3 -Al₂O₃ slag. #### 2.3.2 CaO-Al₂O₃-Ce₂O₃ slag system The total equilibrium mole number of all structural units in CaO-Al₂O₃-Ce₂O₃ slag can be expressed as $$\sum n_i = 2n_1 + 5n_2 + n_4 + n_5 + n_6 + n_7 + n_8 + n_9 + n_{13} + n_{14} \pmod{8}.$$ Mass equilibrium formulas were listed below: $$b_1 = \sum n \cdot (0.5N_1 + N_5 + N_6 + N_7 + 3N_8 + 12N_9)$$ (17) $$b_2 = \sum n \cdot (0.2N_2 + N_{13} + N_{14}) \tag{18}$$ $$a_2 = \sum n \cdot \left(N_4 + N_5 + 2N_6 + 6N_7 + N_8 + 7N_9 + N_{13} + 11N_{14} \right) \tag{19}$$ $$N_1 + N_2 + N_4 + N_5 + N_6 + N_7 + N_8 + N_9 + N_{13} + N_{14} = 1 (20)$$ Therefore, the equation (1)-(5), (9), (10) and (17)-(20) are the governing equations of the developed thermodynamic model for calculating mass action concentrations N_i of structural units or ion couples in the CaO-Al₂O₃-Ce₂O₃ slag. #### 2.3.3 CaO-Al₂O₃-SiO₂-Ce₂O₃ slag system The total equilibrium mole number of all structural units in CaO-Al₂O₃-SiO₂-Ce₂O₃ slag can be expressed as $\sum n_i = 2n_1 + 5n_2 + n_3 + n_4 + n_5 + n_6 + n_7 + n_8 + n_9 + n_{10} + n_{11} + n_{12} + n_{13} + n_{14} + n_{15} + n_{16} + n_{17} \text{ (mol)}.$ Mass equilibrium formulas were listed below: $$b_1 = \sum n \cdot (0.5N_1 + N_5 + N_6 + N_7 + 3N_8 + 12N_9 + N_{10} + 2N_{11} + 3N_{12} + 2N_{15} + N_{16})$$ (21) $$b_2 = \sum n \cdot (0.2N_2 + N_{13} + N_{14}) \tag{22}$$ $$a_1 = \sum n \cdot (N_3 + N_{10} + N_{11} + N_{12} + N_{15} + 2N_{16} + 2N_{17})$$ (23) $$a_2 = \sum n \cdot \left(N_4 + N_5 + 2N_6 + 6N_7 + N_8 + 7N_9 + N_{13} + 11N_{14} + N_{15} + N_{16} + N_{16} + 3N_{17} \right) \tag{24}$$ $$N_1 + N_2 + N_3 + \dots + N_{16} + N_{17} = 1 \tag{25}$$ Therefore, the equation (1)-(13) and (21)-(25) are the governing equations of the developed thermodynamic model for calculating mass action concentrations N_i of structural units or ion couples in the CaO-Al₂O₃-SiO₂-Ce₂O₃ slag. #### 3. Results and discussion In a certain temperature, the calculation could carry out with certain slag components using the governing equations under the conditions of equilibrium state and the standard state. After linearization, Newton iterative method was used in Matlab software to gain all the mass action concentrations of each structural units or ion couples. ## 3.1 Ce₂O₃-Al₂O₃ slag system The relationship between mass action concentrations of each structural unit in binary slag system of Ce_2O_3 -Al $_2O_3$ gained from the established thermodynamic model at 1873 K and the mole fraction of Ce_2O_3 is presented respectively in **Fig.1**. These results can be confirmed from **Fig.1** that when mole fraction of Ce_2O_3 equals 0.49, the mass action concentration of Ce_2O_3 -Al $_2O_3$ achieves its maximum value 0.90 and both the mass action concentrations of Ce_2O_3 and Al_2O_3 maintain at very low levels owing to the strong combination ability of Ce_2O_3 and Al_2O_3 , which combine to form Ce_2O_3 -Al $_2O_3$. However, if the mole fraction of Ce_2O_3 is greater than 0.49, the mass action concentration of Ce_2O_3 would increases sharply. Oppositely, when the mole fraction of Ce_2O_3 is smaller than 0.49, the mass action concentration of Al_2O_3 would increases rapidly. Fig.1 The relationship between N_i in Ce_2O_3 -Al₂O₃ slag and the mole fraction of Ce_2O_3 at 1873 K #### 3.2 CaO-Al₂O₃-Ce₂O₃ slag system According to the established thermodynamic model, the mass action concentrations of each structural unit in $CaO-Al_2O_3-Ce_2O_3$ ternary system were calculated at 1773 K, while CaO/Al_2O_3 (mass fraction) is in the range of $0.7\sim1.5$ and the mass fraction of Ce_2O_3 is in the range of $0\sim45\%$. ## 3.2.1 Mass action concentrations of Al₂O₃ According to the calculation results, the iso-mass action concentrations curves of Al_2O_3 were drawn and compared with the iso-activity curves of Al_2O_3 measured by Shigeru [4], as shown in **Fig.2**. Fig.2 The calculated iso-mass action concentration curves of Al_2O_3 and measured iso-activity curves of Al_2O_3 in $CaO-Al_2O_3-Ce_2O_3$ ternary slag system at 1773 K Fig.2 shows that compared with the $a_{Al_2O_3}$, measured by equilibrating molten Cu and the CaO-Al₂O₃- Ce₂O₃ flux under a controlled oxygen partial pressure, the trends of $N_{Al_2O_3}$ decreasing with the increasing of CaO/Al₂O₃ or Ce₂O₃/Al₂O₃ are in good agreement with the reported measured trends of $a_{Al_2O_3}$ in CaO-Al₂O₃-Ce₂O₃ slag system. This is closely related with the strong combination ability of Ce₂O₃ and CaO with Al₂O₃, which can combine to form various compounds. However, the calculated mass action concentrations of Al₂O₃ are 0.1 times that of the measured activity of Al₂O₃. The possible reason of the great difference between calculated $N_{Al_2O_3}$ and measured $a_{Al_2O_3}$ is that the activity and mass action concentration are having different standard states. In addition, the thermodynamic data is not accurate and the structural unit of slag has uncertainty at high temperature, which still need be further perfected. Further studies reveal that the mass action concentration of Al_2O_3 decreases with the increasing of CaO/Al_2O_3 at a certain content of Ce_2O_3 and with the increasing of Ce_2O_3 content at a certain value of CaO/Al_2O_3 , as shown in **Fig.3**. It can be observed from **Fig.3** that the mass action concentration of Al_2O_3 has a small value when the value of CaO/Al_2O_3 is big and the content of Ce_2O_3 is high. Fig.3. The influence of CaO/Al₂O₃ and Ce₂O₃ content on mass action concentration of Al₂O₃ at 1773 K #### 3.2.2 Mass action concentrations of Ce₂O₃ and CaO The iso-mass action concentration curves of Ce_2O_3 in $CaO-Al_2O_3-Ce_2O_3$ slag system at 1773K were shown in **Fig.4**. It can be seen from **Fig.4** that when CaO/Al_2O_3 (mass ratio) is constant, the mass action concentrations of Ce_2O_3 increase with the increasing of the content of Ce_2O_3 . In addition, when the content of Ce_2O_3 is constant, the mass action concentrations of Ce_2O_3 increase with the increasing of CaO/Al_2O_3 (mass ratio). Fig.4 The iso-mass action concentration curves of Ce₂O₃ in CaO-Al₂O₃-Ce₂O₃ ternary slag system at 1773 K The iso-mass action concentration curves of CaO in CaO-Al₂O₃-Ce₂O₃ slag system at 1773K were shown in **Fig.5**. It can be seen from **Fig.5** that when CaO/Al₂O₃ (mass ratio) is constant, increasing of the content of Al₂O₃ can result in decreasing the mass action concentrations of CaO; in addition, when the content of CaO is constant, increasing of CaO/Al₂O₃ (mass ratio) can lead to decreasing the mass action concentrations of CaO. Fig.5 The iso-mass action concentration curves of CaO in CaO-Al₂O₃-Ce₂O₃ ternary slag system at 1773 K #### 3.3 CaO-Al₂O₃-SiO₂-Ce₂O₃ slag system According to the established thermodynamic model, the mass action concentrations of each structural unit in CaO-Al₂O₃-SiO₂-Ce₂O₃ quaternary slag system were calculated at the condition of that Al₂O₃+Ce₂O₃=33%, the CaO/Al₂O₃ equals to 4.5 and 5.5 and Ce₂O₃ content is in the range of $0\sim15\%$ at 1773K. **Fig.6** The influence of the content of Ce₂O₃ and basicity on the mass action concentrations of Ce₂O₃, Al₂O₃ and Ce₂O₃·Al₂O₃ at 1773 K When the value of CaO/SiO_2 equals to 4.5 and 5.5 respectively, the influence of the mass fraction of Ce_2O_3 on the mass action concentrations of Ce_2O_3 , Al_2O_3 and $Ce_2O_3 \cdot Al_2O_3$ at 1773 K were shown in **Fig.6**. It can be seen from **Fig.6** that with the increasing of the mass fraction of Ce_2O_3 , the mass action concentrations of Ce_2O_3 and $Ce_2O_3 \cdot Al_2O_3$ increase and the mass action concentration of Al_2O_3 decreases respectively. **Fig.6** also reveals that with the value of CaO/SiO_2 increasing from 4.5 to 5.5, the mass action concentrations of Al_2O_3 and $Ce_2O_3 \cdot Al_2O_3$ decrease and the mass action concentration of Ce_2O_3 increases respectively. On the basis of previous work, the thermodynamic model application to the equilibrium between CaO-Al₂O₃-SiO₂-Ce₂O₃ refining slag and molten steel containing aluminum has been further discussed. The composition of the slag is represented as 55.83%CaO-23%Al₂O₃-11.17%SiO₂-10%Ce₂O₃. The mass action concentrations of structural units in this slag were gained by previous formulated thermodynamic model basis on IMCT. Reaction (26), (27) and their standard Gibbs free energy can be deduced from reaction (9), Al and Ce deoxidization reaction [14]. $$2[Ce] + 2(Al_2O_3) = (Ce_2O_3 \cdot Al_2O_3) + 2[Al] \Delta G^{\theta} = -285315.5 - 41.96T \text{ ,J/mol}$$ (26) $$2[Ce] + (Ce_2O_3 \cdot Al_2O_3) = 2(Ce_2O_3) + 2[Al] \Delta G^{\theta} = -168204.5 - 11.88T, \text{ J/mol}$$ (27) $$a_{Al} = f_{Al} [\% Al] \quad \lg f_{Al} = \sum_{j=1}^{n} e_{Al}^{j} [\% j]$$ (28) $$a_{Ce} = f_{Ce}[\%Ce] \quad \lg f_{Ce} = \sum_{j=1}^{n} e_{Ce}^{j}[\%j]$$ (29) The relevant solute interaction coefficients of Ce and Al are listed in **Table 2**^[15]. And the mass action concentrations of Ce_2O_3 , Al_2O_3 and $Ce_2O_3 \cdot Al_2O_3$ are listed in **Table 3**. The relation between cerium and aluminum in molten steel equilibrated with 55.83% CaO-23% Al_2O_3 -11.17% SiO_2 -10% Ce_2O_3 quaternary slag were found out using equations (26)-(29) and data from **Table 2** and **Table 3** at 1873K and 1973K, which is expressed as equations (30)-(33). **Table 2** The interaction coefficient e_i^j of the various elements in liquid steel in 1600-1700°C | i, j | Al, Al | Al, Ce | Ce, Ce | Ce, Al | |---------|--------|--------|--------|--------| | e_i^j | 0.043 | -0.043 | 0.0039 | -2.25 | $\textbf{Table 3} \ \text{The mass action concentration of } Ce_2O_3, Al_2O_3 \ \text{and } Ce_2O_3 \cdot Al_2O_3 \ \text{in 55.83\%} \ CaO-23\% \ Al_2O_3-11.17\% \ Al_2O_3 \ \text{on 55.83\%} \ CaO-23\% \ Al_2O_3 \ \text{on 65.83\%} 65.83$ SiO₂-10% Ce₂O₃ quaternary slag | N | Al_2O_3 | Ce ₂ O ₃ | $Ce_2O_3 \cdot AI_2O_3$ | |---------|-----------|--------------------------------|-------------------------| | T=1873K | 0.006171 | 0.01929 | 0.03122 | | T=1973K | 0.006398 | 0.02200 | 0.03050 | T=1873K $$2.30[\%Al] + lg[\%Al] - 0.047[\%Ce] - lg[\%Ce] = 4.72$$ (30) $$2.30[\%Al] + lg[\%Al] - 0.047[\%Ce] - lg[\%Ce] = 2.76$$ (31) T=1973K $$2.30[\% Al] + lg[\% Al] - 0.047[\% Ce] - lg[\% Ce] = 4.53$$ (32) $$2.30[\% A1] + \lg[\% A1] - 0.047[\% Ce] - \lg[\% Ce] = 2.60$$ (33) **Fig.7** shows the thermodynamics conditions for different type of inclusions formation which is expressed as equations (31), (32) at 1873K and equations (33), (34) at 1973K. **Fig.7** reveals that the content of cerium dissolved in steel increases with the increasing of temperature and the content of aluminum. It can be seen from **Fig.7** that the Ce₂O₃•Al₂O₃ type inclusions would be formed when the content of aluminum was 0.02% with the cerium content in the range of 1.87ppm to 13.30ppm at 1873K and with the cerium content in the range of 2.25ppm to 15.50ppm at 1973K. Consequently, Ce₂O₃ inclusions would form when cerium content higher than this range. On the other hand, when cerium content is lower than this range, the stable inclusions are mainly Al₂O₃. Fig.7 Ce₂O₃, Ce₂O₃•Al₂O₃ and Al₂O₃ formation conditions of [Ce] and [Al] at 1873K and 1973K #### 4. Conclusions (1)Based on ion and molecule coexistence theory, the thermodynamic model formulations for calculating the mass action concentrations of structural units or ion-pair in Ce₂O₃-Al₂O₃, CaO-Al₂O₃-Ce₂O₃ and CaO-Al₂O₃-SiO₂-Ce₂O₃ slag systems are established. The mass action concentrations of each structural unit were gained in the three slag systems. (2) In Ce_2O_3 -Al₂O₃ slag system, results show that when mole fraction of Ce_2O_3 is 0.49, the mass action concentration of Ce_2O_3 -Al₂O₃ achieves its maximum value 0.90 and both the mass action concentrations of Ce_2O_3 and Al₂O₃ maintain at very low values. However, if mole fraction of Ce_2O_3 is greater than 0.49 the mass action concentration of Ce_2O_3 would increase sharply. Oppositely, when mole fraction of Ce_2O_3 is smaller than 0.49 the mass action concentration of Al_2O_3 would increases rapidly. (3) In CaO-Al $_2$ O $_3$ -Ce $_2$ O $_3$ slag system, the trends of calculated mass action concentration of Al $_2$ O $_3$ are in good agreement with the reported measured trends of activity of Al $_2$ O $_3$, namely, the mass action concentration of Al $_2$ O $_3$ decreases with the increasing of CaO/Al $_2$ O $_3$ at a certain content of Ce $_2$ O $_3$ and with the increasing of Ce $_2$ O $_3$ content at a certain value of CaO/Al $_2$ O $_3$. The iso-mass action concentration curves of Ce $_2$ O $_3$ and CaO are drawn from the calculated results. (4) On the basis of previous work, the thermodynamic model application to the equilibrium between CaO-Al₂O₃-SiO₂-Ce₂O₃ slag and molten steel containing aluminum has been discussed. Results show that certain content of cerium would be dissolved in molten steel equilibrated with 55.83%CaO-23%Al₂O₃-11.17%SiO₂-10%Ce₂O₃ slag, which increases with the increasing of temperature and aluminum content, and the corresponding cerium content is in the range of 1.87~13.30ppm when the aluminum content is 0.02% at 1873K. #### References [1] K. Kawakami, S. Takada, I. Takasu, K. Nakashima. Clean and Reliable Bearing Steel. *ICS Proceedings*, 2005, p209-220. - [2] S. Taira, K. Nakashima, K. Mori. Kinetic behavior of dissolution of sintered alumina into CaO-SiO₂-Al₂O₃ slags. *ISIJ International*, 1993, 33(1), p116-123. - [3] W.D. Cho, P. Fan. Diffusional dissolution of alumina in various steelmaking slags. *ISIJ International*, 2004, 44(2), p229-234. - [4] S. Ueda, K. Morita, N. Sano. Activity of AlO_{1.5} for the CeO_{1.5}-CaO-AlO_{1.5} System at 1773K. *ISIJ International*, 1998, 38(12), p 1292-1296. - [5] X.H. Yang, H. Long, G.G. Cheng, C.C. Wu, B. Wu. Effect of refining slag containing Ce₂O₃ on steel cleanliness. *Journal of rare earths*, 2011, 29(11), p1079-1083. - [6] H. Long, G.G. Cheng, B. Wu, Y. Wu. Research on the melting and fluidity properties of refining slag containing Ce₂O₃ for steelmaking. *Journal of the Chinese Rare Earth Society*, 2010, 28(6), p721-727, in Chinese. - [7] J. Zhang. Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press Beijing, China, 2007, p241-245, in Chinese. - [8] M. Mizuno, R. Berjoan, J.P. Coutures, M. Foex. Phase Diagram of the System Al₂O₃-CeO₂ at Liquidus Temperature. *Yogyo-Kyokai-Shi*, 1975, 83(2), p90-96. - [9] A.C. Tas, M. Akinc. Phase Relations in the System Al₂O₃-Ce₂Si₂O₇ in the Temperature Range 900°C to 1925°C in Inert Atmosphere. *J Am Ceram Soc.*, 1993, 76 (6), p1595-1601. - [10] A.C. Tas. Phase Relations in the System Ce₂O₃-Ce₂Si₂O₇ in the Temperature Range 1150°C to 1970°C in Reducing and Inert Atmospheres. *J Am Ceram Soc.*, 1994, 77 (11): p2953-2960. - [11] V.D. Eisenhüttenleute. Slag Atlas, 2nd ed., Woodhead Publishing Limited, Abington, Cambridge, UK, 1995. - [12] E.T. Turkdogan. Physical Chemistry of High Temperature Technology, Academic Press Inc, New York, 1980. - [13] C.W. Bale, P. Chamand, S.A. Degterov, G. Erikseon, K. Hack, R. Ben Mehfoud, J. Melancan, A.D. Pelton, S. Petetaen. FactSage theraachemical software and databases. *Calphad-Computer Coupling of Phaec Diagrams and Thermochemistry*, 2002, 26(2), p189-228. - [14] The Japan Society for the Promotion of Science. The 19th Committee on Steelmaking: Steelmaking Data Sourcebook, Gordon & Breach Science Publishers, New York, 1988, p278-283. - [15] R.J. Fruehan. The Effect of Zirconium, Cerium, and Lanthanum on the Solubility of Oxygen in Liquid Iron. *Metall. Trans.*, 1974, 5, p345-347.