
Reducing Dephosphorization of SiMn Alloy by Molten CaO-CaF2 Flux and 
Thermodynamic Stability of Ca3P2 under Atmospheric Cooling Conditions  

Jae Hong SHIN and Joo Hyun PARK* 

School of Materials Science and Engineering, University of Ulsan, Ulsan 680-749, Korea. 

Abstract: This study consists of experimental measurement of the phosphide capacity of the CaO-CaF2 flux in 

equilibrium with SiMn alloy at 1823 K, and includes the thermodynamic analysis of the stability of reducing refining 

slags under wet atmospheric cooling conditions. The phosphide capacity increased with increasing CaO concentration 

in the flux, followed by a constant value. The composition for the saturating capacity is in good accordance to the 

saturation content of CaO in the CaO-CaF2 flux at 1823 K. When the Vee ratio (=CaO/SiO2) of the reducing 

dephosphorization slag is greater than about 1.35, CaO (lime) and Ca2SiO4 (dicalcium silicate) phases appeared during 

cooling cycle based on the CaO-SiO2-CaF2 phase diagram, resulting in an increase of the evolution rate of PH3 gas due 

to an increase in the reaction area. However, when the Vee ratio of the slag is lower than about 1.35, CaF2, Ca4Si2F2O7 

(cuspidine), and CaSiO3 (wollastonite) phases appeared from the phase diagram, resulting in negligible amount of PH3 

evolution during cooling because the reaction between Ca3P2 and H2O was restricted to the surface of bulk slag. 
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1. Introduction 

High manganese steels (HMnS, 10~25wt%Mn) are of interest due to their good mechanical properties including 

superior strength and good ductility.[1-3] Accordingly, the demand for ultra low phosphorous manganese alloys such as 

FeMn and SiMn alloys has recently increased. However, the conventional oxidizing dephosphorization technique is not 

applicable to manganese alloys because silicon or manganese will be oxidized before phosphorous is under oxidizing 

conditions.[4-8] Therefore, the dephosphorization should be carried out under a strongly reducing atmosphere to produce 

a low phosphorus Mn alloy. The mechanism of reducing dephosphorization has been reported by several authors.[4-11] 

Although several studies concerning the phosphide capacity of lime-based fluxes have been published, there are few 

reports of reducing refining of phosphorus from Si-Mn alloys.  

In addition, because the Ca3P2, which is a reaction product of the reducing dephosphorization mechanism, is very 

active when it contacts to moisture, the phosphine gas (PH3) evolves. The equilibrium reaction of phosphine gas 

evolution is as follows: 

 



     Ca3P2(s) + 3H2O(g) = 3(CaO) + 2PH3(g)          [1] 

     Ca3P2(s) + 6H2O(g) = 3Ca(OH)2 + 2PH3(g)         [2] 

 

Figure 1 shows the Gibbs free energy change of the formation reaction of phosphine gas, which was calculated 

using FactsageTM6.2, whish is thermodynamic computing program. The evolution of phosphine gas is unavoidable 

because the Gibbs free energy change of the formation of phosphine gas has very negative values.  

 

 

Fig 1. Gibbs free energy change of the formation of PH3 gas by the reaction between Ca3P2 and H2O in atmosphere. 

 

Phosphine gas is hazardous to environment as well as to human being. For example, an inhalation is the most 

likely route of exposure to phosphine.[12] Symptoms are non-specific and include irritation of the respiratory tract, 

headaches, dizziness, abdominal pain, sickness, and vomiting. Severe phosphine poisoning can cause convulsions, 

damage to the lungs, heart, liver and kidney, and death.  

Therefore, in the present study, we investigated the thermodynamic behavior of phosphide ions in the CaO-CaF2 

flux in equilibrium with a Si-Mn alloy melt under a strongly reducing atmosphere, and carried out the thermodynamic 

analysis for the environmental stability of reducing refining slags under wet conditions based on the effect of slag 

composition on the evolution of PH3 gas. 

 

2. Experimental  

A super-kanthal electric furnace was used for the equilibration of the CaO-CaF2 flux and Si-Mn alloy melts. The 

Ca3P2 + 6H2O(g) = 3Ca(OH)2 + 2PH3(g)

Ca3P2 + 3H2O(g) = 3CaO + 2PH3(g)
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temperature was controlled within 2 K using a B-type thermocouple and a PID controller. The slag samples were 

prepared using reagent grade CaF2 and CaO calcined from CaCO3 at 1273 K for 10 hours. The experimental 

composition of the slag in the CaO-CaF2 system ranged from 5 to 25wt% CaO.  

The slag (7.0 g) and SiMn alloy (3.5 g) were held in graphite crucibles under a CO atmosphere to equilibrate. For 

reducing removal of phosphorous under a very low oxygen potential, CO gas was diluted with Ar, which was purified 

using silica gel also in addition to Mg turnings at 723 K. The oxygen partial pressure can be calculated based on the 

following reaction.[13]  

 

     (J/mol)85.8114,445ΔCO(g),(g)O
2

1
C(s) o

2 TG       [3] 

 

With a CO/(CO+Ar) ratio of 0.25, the oxygen partial pressure is about 1.7×10-17 atm at 1823 K. The CO gas was passed 

through Drierite®, Mg(ClO4)2, silica gel, and soda lime to eliminate moisture and impurities. The time to establish 

equilibrium was preliminarily determined. After equilibrating for 12 hours, the slag samples were cooled under fully 

moisturized condition (direct contact with water), whereas the other samples were quickly quenched from 1823 K. Then, 

the samples were rapidly crushed for chemical analysis under inert atmosphere. The composition of metal samples was 

determined using ICP-AES and the equilibrium composition of slag was determined using XRF. The crystalline phases 

of solidified slags were identified using XRD analysis. 

 

3. Results and discussion  

3.1. Reducing dephosphorization mechanism of SiMn alloy using CaO-CaF2 flux 

Under the highly reducing conditions, phosphorous is expected to dissolve into the flux as phosphide ions as 

follows:[4-11] 
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where 3P
a and 3P

γ  are the activity and the activity coefficient of the phosphide ions in the slag phase, respectively, 

and Pa  and Pγ  are the activity and the activity coefficient of phosphorous in the SiMn alloy phase, respectively, and 
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where LP is the distribution ratio of P between the slag and metal phases, i.e. ][)( PPP 3 XXL  . Thus, the 

phosphide capacity of the slag is expected to increase with increasing basicity. The phosphide capacity of the flux was 

calculated based on Eq. [7] using the activity coefficient of phosphorus in the metal phase obtained from Eq. [8].[21]  

 

     C
C
PCa

Ca
PFe

Fe
PMn

Mn
P

o
Siin  PP εεlnln XXXεXεγγ        [8] 

 

where o
Siin  Pγ  is the activity coefficient of phosphorous in the silicon melt relative to the infinite dilution condition, 

iεP  is the interaction parameter between phosphorous and element i in the alloy. The o
Siin  Pγ  and iεP  values used in 

the present calculation are listed in Table 1.[22-25]  

 

Table 1. Interaction Parameters and Henrian Activity Coefficient of Phosphorus Used in the Present Study ( iεP ). 

Element (i) Value Solvent Ref. 

Mn 12.0 Si-Mn (XMn ≤ 0.5) 
22 

Fe 7.43 Si-Fe (XFe ≤ 0.65) 

Ca -14.6 Si-P(-Ca) 
23 

P 13.8 Si-P(-Ca) 

C 9.86 Mn-Si(-Csat.) 24 

ln o
P -0.53 Si-P 25 

 

The phosphide capacities of various lime-based fluxes and BaO-BaF2 flux are plotted against the molar content of 

CaO (BaO) in Figure 3. The lime saturation in the CaO-CaF2 flux occurs at 20~25mol% CaO at 1823 K and thus, 

saturation of the phosphide capacity is expected at this composition because aCaO = 1.[14] This means that the reducing 

refining mechanism was confirmed through the transfer of Ca from the slag to the metal phase due to the reaction 

between CaO in the flux and Si in the alloy under strongly reducing conditions (Eqs. [9] and [10]). 



     2(CaO) + [Si] = (SiO2) + 2[Ca]                          [9] 

     3[Ca] + 2[P] = (Ca3P2)                               [10] 

 

    This tendency is in good agreement with the results reported by Tabuchi and Sano.[5] However, despite the fact that 

the same flux was used, our results are lower than Tabuchi and Sano’s work. They calculated the phosphide capacity 

using the standard free energy of dissolution of phosphorous in a silver melt. However, in the present study, the 

phosphide capacity of the flux was calculated using the activity coefficient of phosphorous in the SiMn(-Fe-C) melt 

based on the interaction parameters between phosphorous and each element. Consequently, the discrepancies between 

both studies may be due to thermodynamic uncertainties in the activity coefficients of phosphorous in the Ag and 

Si-Mn(-Fe-C) melts.[7,26]  

 

 

Fig 3. Phosphide capacity of various flux systems as a function of molar content of basic oxide (PS; present study). 

 

Fujiwara et al.[9] measured the phosphide capacity of the CaO-Al2O3-SiO2 slag system in equilibrium with the Si 

base alloy melt at 1873 K. The phosphide capacity of the CaO-Al2O3-SiO2 slag is higher than that of the CaO-CaF2 slag, 

which is due to the higher CaO content in the former system. The phosphide capacity of the 

CaO-SiO2-MgO-Al2O3(-MnO) slags at 1773 K measured by Eric et al.[10,11] at p(O2)=1.210-16 atm is similar to that 

obtained in this study. They also measured the phosphide capacity of the CaO-SiO2-MgO-Al2O3 slag at 1773 K and 

p(O2)=7.810-19 atm, which resulted in a lower capacity for the same slag system. This discrepancy for the same flux 

system originates from the difference in the oxygen potentials.[10,11]  

Because of the experimental difficulty in producing phosphorous vapor, which was originally experienced by 
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3.4. Solidification path of slag and the evolution of PH3 gas 

Table 2 shows the slag composition before and after dephosphorization reaction. The content of SiO2 increased due 

to slag-metal reaction which is given in Eq. [9]. The slag composition after dephosphorization is plotted on the 

CaO-CaF2-SiO2 ternary phase diagram as shown in Figure 7.[31] 

 

Table 2. Slag composition before and after dephosphorization reaction in the present study. 

Sample 

No. 

Before De-P After De-P 

CaF2 CaO CaF2 SiO2 `CaO MnO Fe2O3 

Q1 95 5 96.5 3.6 - 0.3 0.2 

Q2 90 10 93.7 3.9 1.2 0.3 0.2 

Q3 85 15 86.0 5.2 7.7 0.5 0.2 

Q3 80 20 75.8 8.4 14.1 0.8 0.2 

 

Fig 7. Slag composition after dephosphorization, #1 to #4 in the CaO-CaF2-SiO2 ternary phase diagram.[31] 

 

Solidification path can be predicted based on the CaO-CaF2-SiO2 ternary phase diagram and Figure 8 shows 

schematic diagram of cooling path and the microstructure of solidified slag in each case ‘a’ and ‘b’ in Figure 7. For 

slags of #1 and #2, the CaF2 is primarily crystallized, followed by the nucleation and growth of silica. After that, the 

pseudo-wollastonite nucleated and finally the slag solidifies at the CaF2-CaSiO3-3CaO.2SiO2.CaF2 ternary eutectic 

composition. That is, in view of kinetics, the rate of phosphine gas evolution is relatively low, because the solid 

compound that contributes to the disintegration are not precipitated.  

On the other hand, for slags of #3 and #4, the CaF2 is primarily crystallized, followed by the nucleation and growth 



of Ca2SiO4. After that, slag solidifies at the CaF2-Ca2SiO4-(3CaO.SiO2)3CaF2 ternary eutectic composition. That is, the 

rate of phosphine gas evolution is relatively high, because the solid compound that contributes to the disintegration of 

slag, e.g. Ca2SiO4 is precipitated.  

 

 

Fig 8. Schematic diagram of the cooling path and the microstructure of solidified slags. 

 

Consequently, when the Vee ratio of the dephosphorization slag is greater than about 1.35, the lime and dicalcium 

silicate phases appeared during cooling cycle. However, when the Vee ratio of the slag is lower than about 1.35, the 

CaF2, Ca4Si2F2O7 (cuspidine), and CaSiO3 (wollastonite) and SiO2 phases appeared.  

Figure 9 shows the result of XRD analysis of dephosphorization slag that initial composition is 5wt% and 25wt% 

CaO, respectively. The solid compounds at low CaO content slag were identified as mostly CaF2, whereas teh 

compounds at high CaO content slag were confirmed to not only CaF2 but also CaO and Ca2SiO4. Thus, the 

thermodynamic considerations are in good agreement with the experimental data in this study. 

 
Fig 9. XRD analysis of dephosphorization slag. (a) initial CaO content 5wt%, (b) initial CaO content 25wt%.  



Therefore, when the Vee ratio (=CaO/SiO2) of the dephosphorization slag is greater than about 1.35, the evolution 

rate of PH3 gas increases due to an increase in the reaction area. However, when the Vee ratio of the slag is lower than 

about 1.35, the amount of PH3 evolution during cooling is negligible because the reaction between Ca3P2 and H2O was 

restricted only to the surface of bulk slag. 

 

4. Conclusions  

The dephosphorization efficiency increased with increasing CaO concentration in the flux, followed by a constant 

value. The composition for the saturating dephosphorization efficiency is in good accordance to the saturation content 

of CaO in the CaO-CaF2 flux at 1823 K. This means that the reducing refining mechanism was confirmed due to 

transfer of Ca from slag to metal phase by the reaction between CaO in the flux and Si in the alloy under strongly 

reducing conditions. When the dephosphorization slag was disintegrated into fine powders not only due to the phase 

transformation of dicalcium silicate but also due to the hydration of lime in the highly basic flux, the evolution of 

phosphine gas significantly increased. When the Vee ratio (=CaO/SiO2) of the dephosphorization slag is greater than 

about 1.35, the CaO (lime) and Ca2SiO4 (dicalcium silicate) phases appeared during cooling cycle based on the 

CaO-CaF2-SiO2 phase diagram, resulting in an increase in the evolution rate of PH3 gas due to an increase in the 

reaction area. However, when the Vee ratio of the slag is lower than about 1.35, the CaF2, Ca4Si2F2O7 (cuspidine), and 

CaSiO3 (wollastonite) phases appeared from the phase diagram, resulting in negligible amount of PH3 evolution during 

cooling because the reaction between Ca3P2 and H2O was restricted to the surface of bulk slag. Therefore, the Vee ratio 

of dephosphorization slag should be controlled to be lower than 1.35 for retraining phosphine gas evolution. 
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