
Introduction
In recent years, large thermodynamic databases for
multicomponent salt and oxide systems have been
developed by what has come to be known as the ‘Calphad
technique’. Thermodynamic and phase equilibrium data for
binary and ternary subsystems are critically evaluated and,
for each phase, model equations are written, which give the
Gibbs energy, G, as a function of temperature, T, and
composition. Optimized model parameters of these
equations are found which reproduce the data within
experimental error limits. The models are then used to
predict the properties of multicomponent solutions from
these optimized binary and ternary parameters, which are
stored in the databases. The databases are accessed by
Gibbs energy minimization software to calculate
thermodynamic properties, phase diagrams, etc. for
multicomponent systems.

In this article several models of molten salts and slags
will be reviewed. The discussion will be restricted to those
models that can and are being used for the development of
multicomonent databases. To be useful for this purpose, a
model must be sufficiently realistic to have good predictive
ability, but not be so complex as to be mathematically
intractable. Because of space restrictions, the discussion
will focus on the underlying assumptions of the models,
rather than delving into the mathematical details.

Molten salts
The liquidus projection of the LiCl-LiF-KCl-KF ternary
reciprocal system is shown in Figure 1.1,2 (A reciprocal
ternary system contains two cations and two anions. The

axes of Figure 1 are the cationic and anionic molar ratios.)
For purposes of later discussion, let us consider first a naïve
‘associate’ model in which the molten salt solution consists
of a random distribution of LiCl, LiF, KCl and KF
molecules. Its molar Gibbs energy can then be written:

[1]

where Go
AX is the molar Gibbs energy of pure liquid AX,

XAX is its mole fraction, and GE is an excess term arising
from intermolecular interactions. The ‘exchange reaction’
among the pure constituents may be written:

[2]
with

[3]

When GE = 0, the equilibrium constant K = (XKClXLiF)/
(XLiClXKF), and the model is exactly the same as that of an
ideal gas mixture. Since ∆GEXCH < 0, (LiF + KCl) is called
the ‘stable pair’. Along the ‘stable diagonal’ between the
LiF and KCl corners of Figure 1, KCl and LiF molecules
predominate. In the limit of a very negative ∆GEXCH,
Equation [1] would reduce, along the stable diagonal, to the
equation for an ideal solution of LiF and KCl.

From the wide spacing of the isotherms along the stable
diagonal in Figure 1, it is evident that there is a tendency to
immiscibility along this diagonal. This can be more clearly
seen in Figure 21-4, which shows the liquidus along this
join. For other reciprocal salt systems, such as Li, Rb // F,
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Cl in which ∆GEXCH is more negative, miscibility gaps
oriented along the stable diagonal are observed; the more
negative ∆GEXCH, the larger is the gap. This behaviour is
not predicted by the molecular associate model.

This tendency to immiscibility can be understood when
we consider a sublattice model, with the cations randomly
distributed on the cationic sublattice and the anions on the
anionic sublattice. In this case, in a solution along the stable
(LiF + KCl) diagonal, energetically less favourable (Li+-
Cl-) and (K+-F-) nearest-neighbour pairs will be formed as
well as the more favourable (Li+-F-) and (K+-Cl-) pairs.
This energetically unfavourable situation results in a
tendency to separate into immiscible LiF-rich and KCl-rich
solutions. Mathematically, the model is written:

[4]

where XLi = (1–XK) is the cationic sublattice site fraction of
Li (that is, the fraction of cationic sublattice sites occupied
by Li). The anionic sublattice site fractions XF = (1–XCl)
are similarly defined. In Equation [2] the factor multiplying
Go

LiC1 is (XLiXCl), which is the probability, in a random
solution, of finding a (Li+-Cl-) nearest-neighbour pair. With
no loss of generality, we can set Go

LiC1 = Go
KC1 = Go

KF, such
that Go

LiF = ∆GEXCH < 0. Along the stable diagonal, XLi = XF
= XLiF where XLiF is the mole fraction of LiF in the LiF-
KCl pseudo-binary system (Figure 2). Hence, Go

LiF is
multiplied by X2

LiF in Equation [4] (rather than by XLiF as in
Equation [1]), and the resultant curvature in the G-surface
gives the tendency to immiscibility, which becomes greater
as ∆GEXCH becomes more negative. It is important to note
that this occurs even for an ideal solution with GE = 0.

Unfortunately, this model goes too far and overestimates
the tendency to immiscibility. In the Li, K // F, Cl system,
for example, an actual immiscibility gap (not just a
tendency towards one) is predicted by Equation [4]. This
occurs because the model neglects short-range ordering.
Because ∆GEXCH is negative, the number of (Li+-F-) and
(K+-Cl-) nearest-neighbour pairs is greater than in a random
mixture, with a resultant stabilization of the liquid. That is,
there is clustering of (Li+-F-) and (K+-Cl-) pairs. To account
for this, Blander and co-workers5,6 used a quasichemical
model. Rather than assuming a random distribution of ions
on lattice sites, the model assumes that nearest-neighbour
(A+-X-) ion pairs are randomly distributed over ‘pair sites’.
The numbers of (Li+-F-) and (K+-Cl-) pairs are set equal to
(XLiXF+y) and (XKXCl+y), while the numbers of (Li+ - Cl-)
and (K+-F-) pairs equal (XLiXCl-y) and (XKXF-y), where y is
a positive variational parameter. The molar Gibbs energy is
now written:

[5]

where Z is the coordination number, usually take to be
between 4 and 6. When y = 0, Equation [5] reduces to
Equation [4 ]. Setting ∂G/∂y = 0 results in an equilibrium
constant which, when GE = 0, is given by:

[6]

Equation [6] can be solved to give y, which can then be
substituted back into Equation [6]. Blander showed that, for
small values of y, this correction for short-range ordering
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Figure 1b. Liquidus projection of the LiCl-LiF-KCl-KF system,
experimental as reported by Berezina et al.2

Figure 1a. Liquidus projection of the LiCl-LiF-KCl-KF system,
calculated with the Modified Quasichemical Model1
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can be approximated by adding the term (-XLiXKXFXCl
(∆GEXCH)2/2ZRT) to Equation [4].

The GE term in Equation [5] is assumed to arise from
second-nearest-neighbour cation-cation and anion-anion
interactions, and is approximated as a weighted average of
the GE values of the four common-ion binary systems on
the edges of the composition square. For example, if
GE

LiF-KF is the value of GE in the LiF-KF binary system
(obtained from optimization using binary data), where
GE

LiF-KF is a function of XLi, then a term XFGE
LiF-KF is

included in Equation [5]. Similar GE terms from the three
other binaries are also included. With this assumption, the
calculated Li, K // F, Cl phase diagram is in reasonable
agreement with the experimental diagram but still shows
significant deviations. For systems with more negative
values of ∆GEXCH, which exhibit an actual immiscibility
gap, the agreement is worse. Dessureault and Pelton7

showed that this is due to the approximation involving GE.
Essentially, GE

LiF-KF results from second-nearest-neighbour
(Li+-(F-)–K+) interactions. By including the term
XFGE

LiF-KF in Equation [5], the model assumes that the
number of (Li+-(F-)–K+) second-nearest-neighbour pairs in
the ternary solution is XF times the number of such pairs in
the binary solution. This is true in a random mixture, but
when there is short-range-ordering (clustering of (Li+-F)
and (K+-Cl-) nearest-neighbours), the number of (Li+-(F-)
–K+) configurations will be less than in a random mixture.
Dessureault and Pelton showed how this effect could be
taken into account approximately, and obtained much-
improved agreement between calculated and experimental
phase diagrams for several salt systems. Recently, Pelton
and Chartrand8 gave a more rigorous treatment of the
coupling between the short-range ordering of first- and
second-nearest neighbour pairs by developing the Modified
Quasichemical Model in the quadruplet approximation,
whereby quadruplets Li2Cl2, LiKCl2, LiKFCl, etc. are
distributed over ‘quadruplet sites’. The model reduces to
Equations [5] and [4] as GE and ∆GEXCH become small.
Using this model, they calculated the diagram shown in
Figure 1a, which agrees within experimental error limits
with the measured diagram in Figure 1b. The excellent
agreement is very evident along the stable diagonal as
shown in Figure 2.

It must be stressed that the calculated diagram in Figures
1 and 2 is predicted solely from the GE expressions for the
four binary systems and from the Gibbs energies, Go

i, of the
pure components. No adjustable ternary model parameters
were used. Pelton and Chartrand8 extended the model to
systems with ions of different charges such as Mg, K // F,
Cl and to systems of many components. The model has
been applied to develop extensive multicomponent
databases for halides of alkali, alkaline earth, and transition
metals,1,9-14 and has been applied with success to highly-
ordered multicomponent melts containing cryolite and
AlCl315,16.

Slags
Molten silicate slags are also ionic liquids, albeit with more
complex structures than molten halide solutions. Consider
the CaO-MgO-SiO2 system whose liquidus projection is
shown in Figure 3. In very basic slags, it is well established
that the principal ionic species present are Ca2+, Mg2+, O2-

and SiO4
4- ions. If we join the compositions corresponding

to CaO, MgO, Ca2SiO4 and Mg2SiO4 by straight lines in
Figure 3 we define a trapezoid, which is similar to a
reciprocal salt composition square as in Figure 1. That is,
within this trapezoid we could, to a rough approximation,
model the slag as a reciprocal salt solution with Ca2+ and
Mg2+ ions on a cationic sublattice and O2- and SiO4

4- ions on
an anionic sublattice.

In Figure 3, the isotherms are widely spaced along the
MgO-Ca2SiO4 diagonal of the trapezoid. A temperature-
composition phase diagram along this join looks like Figure
2, with a flat liquidus indicating a tendency to
immiscibility. As discussed above, this occurs because
∆GEXCH is negative for the exchange reaction:

[7]

That is, (MgO + Ca2SiO4) is the ‘stable pair’. Therefore, as
discussed, a proper modelling of this solution must take
account of its ionic nature and of short-range ordering.

Of course, even in basic solutions, the structure of the
slag is more complex than this. As the SiO2 content
progressively increases, the orthosilicate ions share oxygens

Mg SiO CaO Ca SiO MgO2 4 2 42 2+ = +

Figure 2. Liquidus along the LiF-KCl stable diagonal of the
calculated diagram in Figure 1a. Lines are calculated from the

Modified Quasichemical Model.
�  Liquidus and eutectic temperatures from Gabcona et al.3.

� Liquidus temperatures from Berezina et al.2.
� Liquidus temperatures from Margheritis et al.4.

Figure 3. Liquidus projection of the CaO-MgO-SiO2 system at 1
bar pressure calculated17 from the Modified Quasichemical

Model (T in °C)

�
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in ‘oxygen bridges’ (Si-O-Si) to form, at first linear-chain
polymers, then branched-chain polymers, then two-
dimensional structures, and eventually a three-dimensional
silica network. To realize our goal of developing large
databases, we require a model that can account for this
complex structure, but in a relatively simple fashion. We
also need one single model which applies to the entire
composition region from pure CaO and MgO to pure SiO2.

Recall that our aim is firstly to model the binary solutions
to obtain optimized empirical model parameters that
reproduce the binary data, and then secondly to use the
model to predict the properties of ternary and higher-order
solutions. A typical Gibbs energy curve for a binary silicate
solution is shown for MgO-SiO2 solutions in Figure 4. The
sharp minimum near XSiO2 = 1/3 results from the very
negative ∆G[8] of the well known reaction:

[8]

where Oo represents a (Si-O-Si) bridging oxygen, O2- is a
free oxygen ion (supplied by MgO), and O- is an oxygen
singly-bonded to one silicon. Since �G[8] is very negative,
the solution at XSiO2 = 1/3 consists mainly of Mg2+ and
SiO4

4- ions.

Associate models
The simplest way to model the binary liquid is with an
‘associate’ model consisting of a random mixture of MgO,
SiO2 and Mg2SiO4 associates (or molecules). There is
assumed to be an equilibrium among the associates:

[9]

with an equilibrium constant:

[10]

where XMgO and XSiO2 are the mole fractions of the
associates in solution as distinct from the overall
component mole fractions XMgO and XSiO2 · ∆Go

[9] is a
model parameter. If it is very negative, a sharp minimum in
the Gibbs energy curve (Figure 4) at XSiO2 = 1/3 is
calculated. As ∆Go

[9] is made less negative, the curve
becomes more rounded and the minimum shifts to higher
XSiO2. ‘Fine-tuning’ of the model is achieved by
introducing, into the G equation, interaction terms such as

ω XMgO XMg2SiO4, where ω is an empirical interaction
parameter. With a sufficient number of such empirical
interaction parameters, one can usually obtain a reasonable
reproduction of binary data, such as the binary phase
diagram in Figure 5.

However, in ternary CaO-MgO-SiO2 slags, this model is
similar to the molecular model of the LiCl-LiF-KCl-KF salt
melts. Therefore, for the reasons discussed in above, the
tendency to immiscibility along the Ca2SiO4-MgO join is
not predicted because the ionic nature of the solution is not
taken into account. This is one example of the often low
predictive ability of associate models resulting from their
unrealistic nature.

Lin-Pelton Model
Lin and Pelton19 proposed an ionic model for binary MO-
SiO2 melts (M = Ca, Mg, Pb, . . .) over the entire
composition range. In one mole of solution, let NO- be the
number of moles of oxygens which are bonded to only one
Si. From reaction [8] and a simple mass balance, it follows
that the numbers of moles of O2- and Oo species are given
by: NO2- = (XMO-NO-/2) and NOo = (2XSiO2-NO-/2). An
expression for the entropy of solution ∆S, as a function of
NO-, is written by first randomly distributing the NO2-

oxygen ions and XSiO2 silicate tetrahedra over the sites of a
quasi-lattice, and then randomly distributing the NO0

oxygen bridges between neighbouring silicate tetrahedra. In
very basic solutions this reduces, in the limit, to a model of
O2- and SiO4

4- ions randomly distributed on anionic sites. In
very acid solutions it reduces to a model of a silica network
with one mole of Oo bridges randomly broken by the
addition of each mole MO. The enthalpy of solution is
given as ∆H = (NO-∆Go

[8]/2). For any given value of
∆Go

[8], which is an empirical model parameter, the
equilibrium value of NO- at any composition is calculated
by setting ∂(∆H–T∆S)/∂NO- = 0 at constant XSiO2. By
expressing ∆Go

[8] as an empirical polynomial expansion in
XSiO2, good optimizations of binary systems can be
obtained (especially with modern optimization software,
which was not available to Lin and Pelton).

Although the model does not explicitly consider
polymeric silicate chains, their concentrations can be
calculated a posteriori. For example, the number of silicate
dimers is calculated, at any composition, from the
calculated equilibrium value of NO- by computing the
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Figure 5. Phase diagram of the MgO-SiO2 system at 1 bar
pressure calculated18 from the Modified Quasichemical Model

Figure 4. Gibbs energy of liquid MgO-SiO2 slags at 2000°C
(relative to pure liquid SiO2 and supercooled liquid MgO)

calculated from the Modified Quasichemical Model18
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probability that two neighbouring silicons share a bridging
oxygen but do not share bridging oxygens with any other
neighbours. Figure 6 shows the equilibrium concentrations
of monomers SiO4

4-, dimers, trimers and linear tetramers in
CaO-SiO2 slags calculated19 from the optimized
thermodynamic parameters. It is interesting that this
distribution is nearly identical to that calculated by
Masson20 who modelled basic melts using Flory’s
polymeric model, taking chain polymers explicitly into
account.

Romero and Pelton21 extended the Lin-Pelton model to
ternary slags such as MgO-CaO-SiO2 by assuming ∆Go

[8] to
vary linearly with the ratio XMgO / (XMgO + XCaO) between
its values in the MgO-SiO2 and CaO-SiO2 systems, and by
assuming a random mixture of Mg2+ and Ca2+ cations on a
cationic sublattice. In basic slags, when monomers
predominate, this model reduces in the limit to the ionic
model with random distributions of Mg2+ and Ca2+ ions on
the cationic sublattice and O2- and SiO4

4- ions on the anionic
sublattice (similar to Equation [4]). However, like Equation
[4], it does not account for short-range ordering
(clustering). Therefore, as discussed above, it qualitatively
predicts the observed tendency to immiscibility along the
MgO-Ca2SiO4 diagonal, but tends to overestimate the
extent of the immiscibility, and provides good quantitative
predictions only when the exchange Gibbs energy (as in
Reaction [7]) is small. To account for short-range ordering,
Romero22 applied ad hoc correction terms with some
success. With a quasichemical-type approach, it may be
possible to take account of this ordering in a more
fundamental manner, but this has not yet been tried.

Reciprocal Ionic Liquid Model
Hillert et al.23 have proposed the two-sublattice ‘Reciprocal
Ionic Liquid Model’ (RILM) for molten slags. In CaO-

MgO-SiO2 slags24 for example, Ca2+ and Mg2+ ions are
randomly  distributed on a cationic sublattice, while O2-,
SiO4

4- and neutral SiOo
2 species are randomly distributed on

an anionic sublattice. The number of sites on a sublattice is
always taken as equal to the number of species on that
sublattice (which varies with composition). The numbers of
SiO4

4- and SiOo
2 species are determined by the equilibrium:

[11]

which is essentially the same as Equation [8]. The principal
model parameter in a binary slag MO-SiO2 is the Gibbs
energy change ∆G[11]. The model is clearly similar to the
Lin-Pelton model. In basic melts, if ∆G[11] is very negative,
the model reduces in the limit to a model of O2- and
SiO4

4- ions. In more acid melts, the model accounts for
polymerization and the eventual formation of a silica
network, although in a somewhat less realistic manner than
the Lin-Pelton model. For example, for very dilute
solutions of MO in SiO2 the model reduces to a solution of
SiOo

2 and SiO4
4-. It is also difficult to see how polymeric

chain distributions as in Figure 6 could be calculated a
posteriori.

In ternary melts such as MgO-CaO-SiO2, in the very
basic concentration region where the concentration of SiOo

2

is small, the model reduces to the ionic model of a random
distribution of Mg2+ and Ca2+ ions on the cationic sublattice
and of O2- and SiO4

4- ions on the anionic sublattice (similar
to Equation [4] and very similar to the Lin-Pelton model).
However, like Equation [4] and like the Lin-Pelton model,
it does not account for the short-range ordering (clustering),
and so tends to overestimate the tendency to immiscibility
along the Ca2SiO4-MgO join. The authors add an excess
term XCaXMgXOXSiO4LCa,Mg:O,SiO4 to the Gibbs energy
equation, where the Xi are the site fractions (written as
yCa2+ , etc in the authors ’ notation) and LCa,Mg:O,SiO4 is a
model parameter. As discussed above, Blander5,6 showed
that a term of this form provides an approximate correction
for short-range ordering when LCa,Mg:O,SiO4 = -
(∆GEXCH)2/2ZRT. It is not clear whether the authors23,24

actually treat this term as a correction for short-range
ordering, or only as an empirical ternary parameter. That is,
in the absence of ternary experimental data, the default
value of LCa,Mg:O,SiO4 should be -(∆GEXCH)2/2ZRT rather
than zero if, in fact, it is considered as a correction for
ordering.

As discussed, Lin and Pelton19 expressed �G[8] as an
empirical polynomial in XSiO2 in order to permit
optimizations of binary systems. In the RILM, ∆G[11] is
assumed to have one concentration-independent value (at
any T) in any given binary system MO-SiO2, and additional
model parameters are provided through excess Gibbs
energy terms such as XCaXMgXOLCa,Mg:O,
XCaXOXSiO2LCa:O,SiO2 etc. These terms represent
interactions between species on the same sublattice, just as
the GE terms in Equation [5] represent cation-cation and
anion-anion second-nearest neighbour interactions; the
functional form of the terms is very similar in the two
models.

The RILM has been used with success for the complete
and detailed evaluation/optimization of many binary and
ternary oxide systems and in the development of databases
for multicomponent slag systems.

The Modified Quasichemical Model
The Modified Quasichemical Model (MQM) was

SiO O SiO Go
2

2
4
4

112+ =− −
[ ];   ∆

Figure 6. Silicate polyanion chain length distribution in CaO-
SiO2 slags at 1600°C calculated from the Lin-Pelton model19

(solid lines) and from Masson’s model20 (dashed lines). N1, N2 , N3

and N4 are the concentrations per mole of solution of monomers,
dimers, trimers and linear tetramers
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introduced by Pelton and Blander25,27 The most recent
version of the model is discussed in a series of articles8,28,29

For the binary slag MgO-SiO2, the model considers only
one lattice occupied by Mg and Si. Short-range ordering is
taken into account through the following ‘quasichemical’
reaction among second-nearest neighbour pairs:

[12]

The molar Gibbs energy change of reaction [12] is ∆gMgSi

which is the principal model parameter.
The configurational entropy is given (in the pair

approximation or Ising model) by randomly distributing the
pairs over ‘pair sites’. The enthalpy and non-
configurational entropy of mixing are given as the product
of the number of (Mg-Si) pairs times ∆gMgSi. The molar
Gibbs energy equation is:

[13]

where XMgMg, XSiSi and XMgSi are the pair fractions (where
XMgMg + XSiSi + XMgSi = 1), ZMg and ZSi are second-nearest-
neighbour coordination numbers, and YMgO and YSiO2 are
weighted mole fractions defined as: YSiO2 = (1-YMgO) =
ZSiXSiO2/(ZMgXMgO + ZSiXSiO2). From mass balance
considerations it can be shown that YMgO = (XMgMg +
XMgSi/2) and YSiO2 = (XSiSi + XMgSi/2). The values of the
pair fractions at equilibrium at any overall composition
XSiO2 are given by setting ∂G/∂XMgSi = 0. This results in an
equilibrium constant for reaction [12]:

[14]

When ∆gMgSi is very negative, reaction [12] is displaced
strongly to the right. In a basic melt this means that (Mg -
Mg) and (Mg–Si) pairs predominate (i.e. XSiSi≈0); each Si
atom has only Mg atoms in its second coordination shell
and, since it is bonded to four oxygens in its first
coordination shell, this configuration is equivalent to an
SiO4

4- ion. By setting ZSi = 2ZMg , we ensure that the Gibbs
energy curve, for very negative ∆gMgSi, will have a sharp
minimum near XSiO2 = 1/3, since this is then the
composition where XMgSi ≈ 1 and virtually all Mg atoms
have Si atoms as second-nearest neighbours and vice versa;
that is, the structure is equivalent to Mg2

2+SiO4
4-. In the basic

composition region, for large negative ∆gMgSi, the Gibbs
energy equation is nearly identical to that of the ionic
sublattice model with Mg2+, O2- and SiO4

4- ions.
At higher SiO2 contents (and/or for less negative values

of the parameter ∆gMgSi) the fraction of (Si-Si) pairs, XSiSi,
increases, A (Si–Si) pair is clearly associated with an
oxygen bridge. With the MQM one can thus calculate the
distribution of silicate dimers, trimers, etc. using a
procedure similar to that discussed above. When this is
done,  curves very similar to those in Figure 6 are obtained.
Similar a postiori calculations of the concentrations of
bridged, singly-bonded and free oxygens in CaO-SiO2 slags

agree well with concentrations measured by X-Ray
photoelectron spectroscopy.30

In very acid melts, for large negative ∆gMgSi, XMgMg ≈ 0,
and it can be shown that the MQM reduces to a model with
one mole of oxygen bridges being broken by the addition of
each mole of MgO in dilute solution in SiO2.

The similarity among reaction [12] of the MQM, reaction
[11] of the RILM, and reaction [8] of the Lin-Pelton model
is evident.

In order to permit optimizations, the model parameter
∆gMgSi is expanded as an empirical polynomial in
composition YSiO2. Very good optimizations of binary
systems, with a small number of parameters, are obtained.
The binary phase diagram in Figure 5 was calculated18 with
the MQM with 5 parameters. All experimental phase
diagrams, activity, and other thermodynamic data are
reproduced within error limits.18

In ternary and multicomponent systems, Equation [12] is
expanded by adding more terms. In the CaO-MgO-SiO2
system, for instance, G is written as a function of the
various pair fractions, and the equilibrium configuration is
calculated by setting ∂G/∂XMgSi = ∂G/∂XCaSi = 0. Since, in
the basic region, the model is very similar to the ionic
model, the tendency to immiscibility along the MgO-
Ca2SiO4 join is predicted. Moreover, the short-range
ordering is also taken into account naturally (and not by the
addition of ad hoc terms). Since ∆gCaSi < ∆gMgSi, the
predominant pairs along the Ca2SiO4-MgO join are (Ca-Si)
and (Mg-Mg). This is equivalent to the clustering of Ca2+

ions with SiO4
4- ions and of Mg2+ ions with O2- ions. This

important feature of the MQM was pointed out by
Blander31.

Since �gMgSi and �gCaSi are functions of composition in
the respective binary systems, a proper strategy must be
chosen to select which values of these parameters should be
used at any ternary composition point. In the present
example, it seems reasonable to select values from the
binary systems at the same silica content, XSiO2, as at the
ternary composition point. This strategy has proven
successful in calculations in many similar systems of SiO2
with two or more basic oxides. However, the optimal
strategy is less evident when, in the same system, there is a
basic, an acidic and an amphoteric component as in the
CaO-Al2O3-SiO2 system. Furthermore, once a proper
strategy is chosen for every ternary subsystem of an N-
component system, these must be correctly combined to
predict the properties of the N-component slag. This is an
important consideration since the choice of strategies can
have a large effect on the predictions. This is discussed in a
recent article.32 The MQM permits a flexible choice of
strategies. 

The phase diagram of the CaO-MgO-SiO2 system in
Figure 3 was calculated17 using the MQM for the liquid
phase with three small ternary parameters; all data are
reproduced within error limits. Even with no ternary
parameters, the slag properties are predicted very well. The
MQM has been used to evaluate/optimize several hundred
binary and ternary oxide systems and to develop the large
FACT33 database permitting the calculation of
thermodynamic properties and phase equilibria in
multicomponent oxide systems. As a sample, the
calculated34 liquidus projection at 15 per cent Al2O3 of the
SiO2-CaO-MgO-Al2O3 system is compared with the
reported diagram35 in Figure 7. Of course, the database
used in this calculation33 contains optimized models not
only for the slag phase, but also for the solid solution
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phases (spinel, pyroxene, etc.), each employing a model
appropriate to its crystal structure. Further examples of
calculations of oxide systems using the FACT database will
be given in another presentation36 during this conference.

Recent improvements to the MQM include improved
flexibility by expanding the parameters such as �gMgSi as
polynomials in the pair fractions rather than the component
fractions, and by introducing composition-dependent
coordination numbers. A treatment of the charge
compensation effect, whereby Na+ ions pair with Al3+ ions
in Na2O-Al2O3-SiO2 melts thereby permitting Al to enter
the silicate network, has been given37 within the framework
of the MQM. The Reddy-Blander model38 for sulfide (and
other) capacities of molten slags has been incorporated into
the MQM,39,40 thereby permitting the addition to the
FACT33 database of S2-, SiO4

2-, CO3
2-, F-.C-, I- and other

anions in dilute solution in oxide slags.

The Cell Model
The Cell Model was introduced by Kapoor and Frohberg41

and extended by Gaye and Welfringer.42 In this model, a
CaO-MgO-SiO2 slag is considered to consist of ‘cells’;
[Mg-O-Mg], [Si-O-Si], [Mg-O-Si], [Ca-O-Si], etc. which
mix essentially ideally. The principal binary model
parameters are the Gibbs energy changes WMgSi of
equilibria among the cells such as:

[15]

The close similarity to Equation [12] of the MQM is
evident. Like the MQM, and for the same reasons, the Cell
Model accounts in a natural way for short-range ordering
along the Ca2SiO4-MgO diagonal. The Gibbs energy
parameters Wij may be expanded as linear functions of
composition.42 Additionally, excess Gibbs energy terms are
included which are related to the interactions between pairs
of cells.

The Cell Model has been applied with success to the
optimization of many systems and has led to the
development of databases for multicomponent systems.
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