Modelling viscosity of TiO_x containing silicate melts ## L. ZHANG and S. JAHANSHAHI CSIRO Minerals, Clayton South, Victoria, Australia Experimental studies on viscosity of titanium bearing slags have been reviewed and the assessed data were used in extending the capability of the structurally related viscosity model for silicate melts, developed by the present authors. Experimental data on ternary and higher order systems containing CaO, MgO, MnO, FeO, Al₂O₃, TiO₂, Ti₂O₃, SiO₂ were assessed and used. The newly extended viscosity model represented the viscosity behaviour over broad temperature and composition ranges. The structural role played by TiO₂ and Ti₂O₃ in silicate network structure is discussed with respect to their effect on viscosity of melts. Keywords: viscosity model, TiO_x containing silicate melts, silicate network structure. # Introduction Titaniferous ore is sometimes used as a feed material for production of hot metal in electric arc and blast furnaces. The reducing conditions in these furnaces result in low FeO slags containing up to 35% $\rm TiO_x$ in a matrix of $\rm Al_2O_3$ -CaO-SiO₂-MgO-MnO. For improved operation of these ironmaking processes, modifications to the slags' chemistry could result in reducing the liquidus temperature and viscosity of the slag produced. Previous studies by Holmes *et al.*¹ and Ratchev and Belton² have established the effects of slag chemistry and oxidation state on the liquidus region of titania rich slags. It was found that reduction of TiO₂ to Ti₂O₃ can have a pronounced effect on the liquidus temperature of such slags². Similarly, there are published data on the viscosity of ternary and higher order systems containing varying concentrations of titanium oxides³-1⁴. The influence of TiO₂ to Ti₂O₃ on viscosity of silicate slag has been studied in both homogeneous liquid and melts containing solid particles. It was found that for a given slag, additions of TiO₂ and Ti₂O₃ caused viscosity to decrease at a given temperature above the liquidus. However, the presence of the solid phase at temperatures below the liquidus resulted in a sharp rise in the viscosity. It should be mentioned that the effect of a particular oxide component on viscosity should be considered in two aspects. The first is the effect on the homogeneous liquid, for example in silicate melts, additions of so called network modifiers, such as CaO and MnO, will in general reduce viscosity. Such an effect may be related to the bonding characteristic of the oxides concerned, as discussed previously by the present authors^{15–17}. The second effect comes from the influence of the oxides on the liquidus temperature of the melts. If the addition of a certain amount of a particular oxide stabilizes a solid phase, the viscosity of the melt is expected to rise sharply with an increasing amount of the solid phases. The latter effect can very often override the effect on the homogeneous liquid phase. The present work was part of ongoing development of a multi-phase reaction model at CSIRO¹⁸. The package enables metallurgists to simulate reactions in pyrometallurgical processes with respect to equilibrium between various phases, and to calculate slag viscosity at elevated temperatures. The viscosity model developed by the present authors during the past decade relates viscosity to the structural properties of the silicate melts^{15–17}. The classification of oxide components as glass former, modifier and amphoteric as proposed by Urbain²¹ was adopted to distinguish the structural role played by various oxides and analyse their contributions to viscosity. Such an approach has made it possible to describe viscosity behaviour of high order systems using binary model parameters only. The model has been validated using published data from binary to multi-component systems (silicate and calcium ferrite type), as well as various types of industrial slags^{15–20}. The oxide components included in the model currently, are SiO₂, Al₂O₃, Fe₂O₃, TiO₂, Ti₂O₃ CaO, MgO, MnO, FeO, PbO, NiO, Cu₂O, ZnO and CoO. Details of the formulation of the model and most of the validation results can be found elsewhere 15-20. In the present paper, application of the current modelling approach to multi-component silicate slags containing TiO_2 and Ti_2O_3 will be discussed. The extension of our viscosity model to TiO_2 and Ti_2O_3 containing silicate melts was based on analysis and review of the experimental data. ## Review of viscosity data ## CaO-TiO₂-SiO₂ system A number of groups3,9–14 have measured the viscosity in the CaO-TiO₂-SiO₂ system and have shown that addition of TiO₂ reduces the viscosity of CaO-SiO₂ based melts. However, there is a large scatter among different studies and it was found that the data by Dingwell⁹ are most accurate. Dingwell's measurements were carried out under well controlled conditions, i.e., in air and using Pt-20%Rh components. Under such conditions the slags can be considered free of Ti₂O₃ and other contaminants. Furthermore, only data in the liquid region were reported, which covered the targeted composition range of 10 to 80 mol% TiO₂ along the CaSiO₃-TiO₂ join, and the temperature range of 1400–1600°C. Figure 1 presents Dingwell's data, where the effect TiO₂ additions to the Figure 1. Comparison between the calculated viscosity and the experimental data9 on the effect of TiO2 addition along the CaSiO3-TiO2 join in the CaO-TiO2-SiO2 system CaO-SiO₂ binary melt, with unit molar ratio CaO/SiO₂, is shown at different temperatures. It is apparent that at a given temperature, addition of TiO₂ causes viscosity to decrease. It is also noted that the measured viscosity for the CaO-SiO₂ binary melt at 1600°C by Dingwell agree well with other published data²²⁻²⁵ (Figure 1). It should be mentioned that the compositions reported by Dingwell⁹, which were obtained after the viscosity measurements, were used for the construction of Figure 1. These compositions for TiO₂ were generally lower than the targeted values and were not available for TiO₂ greater than 50 mol%. Furthermore, CaO/SiO₂ ratios were in a range of 0.94–0.98, rather than unity as targeted. #### MnO-TiO₂-SiO₂ system Viscosity behaviour in the MnO-TiO₂-SiO₂ system was investigated by Yagi *et al.*¹³ over a temperature range of 1400–1600°C with silica mole fractions varying from 0 to 0.5. Pt-Rh alloy components were used for these measurements, thus avoiding contamination of the melts. Figure 2 shows their results on the effect of substituting TiO₂ for MnO at given silica mole fractions at 1600°C. It is evident that for a given silica content (mole fraction), substitution of ${\rm TiO_2}$ for MnO does not seem to cause significant change in the viscosity of these slags. This implies that ${\rm TiO_2}$ and MnO have very similar effects on the viscosity of silicate melts. #### MgO-TiO₂-SiO₂ system In this ternary system only two experimental datum points by Nakamura *et al.*¹¹ were found. These measurements were on a 35%(mol)MgO-30%SiO₂-35% TiO₂ slag at 1500 and 1550 C. The results showed a viscosity decrease of 0.011 Pa.s as the temperature was increased from 1500 to 1550°C. ## PbO-TiO₂-SiO₂ system Nakamura *et al.* also investigated the effect of the addition of TiO₂ to the PbO-SiO₂ binary melts on viscosity¹¹. Their study covered a temperature range of 800–1300°C and TiO₂ content of 0 to 0.3 mole fraction at PbO/SiO₂ mole ratio of 1, 3/2 and 7/3. Their data showed that at the mole ratio of PbO/SiO₂ =1, TiO₂ addition resulted in a decrease in viscosity, while when PbO/SiO₂ =7/3, addition of TiO₂ had an opposite effect. Figure 3 shows the data at 1150°C, for which more datum points are available. ## CaO-Al₂O₃-TiO₂-SiO₂ system Ohno and Ross³ studied viscosity in the CaO-TiO₂-Al₂O₃-SiO₂ system. Their measurements covered composition range of CaO/SiO₂ ratio=0.6, 1.0 and 1.16 and TiO₂ contents of 0 to 45 wt% between 1400–1500°C. The Al₂O₃ levels were fixed at 10 and 20 wt%. Frohberg and Weber¹⁴ also reported viscosity data in this quaternary system, with Al₂O₃ levels of 0 to 20 wt% (with 5 wt% interval) at 1600°C. Both sets of data showed that at a given temperature and CaO/SiO₂ ratio, viscosity decreased with TiO₂ addition. Figure 4 presents the data by Ohno and Ross³ measured at 1500°C. It can be seen that viscosity decreased as TiO₂ addition increased at a given CaO/SiO₂ ratio. It also showed that the higher level of Al₂O₃ corresponded to higher values of viscosity. ## Blast furnace type slags Measurements on blast furnace type slags containing CaO, MgO, TiO₂, Al₂O₃ and SiO₂ under neutral atmospheres have been reported by Xie *et al.*⁴ and Van der Colf and Howat⁵. The composition and temperature ranges covered by the two studies are listed in Table I. Both sets of data covered similar composition range. Handfield *et al.* have Figure 2. Comparison between the calculated viscosity and the experimental data¹³ on the effect of substitution of TiO₂ for MnO in the MnO-TiO₂-SiO₂ system at 1600°C Figure 3. Comparison between the calculated viscosity and the experimental data¹¹ on the effect of addition of TiO₂ to the PbO-TiO₂-SiO₂ system at 1115°C Figure 4. Comparison between the calculated viscosity and the experimental data at 1500°C3 in the CaO-Al₂O₃-TiO₂-SiO₂ system Table I Experimental conditions used in the viscosity measurements by Xie et al.⁴ and Van der Colf and Howat⁵ | Ref | T (°C) | Composition wt% | | | | | |------------|------------------------|------------------|------------------|--------------------------------|-----------------|------------------| | | | SiO ₂ | TiO ₂ | Al ₂ O ₃ | CaO | MgO | | [4]
[5] | 1240–1540
1322–1492 | 21–29
21–31 | 17–33
25–30.2 | 9–19
11.2–13.8 | 24–31
8.3-24 | 7–16
8.3–23.5 | investigated the influence of TiO_2 , TiO and Ti_2O_3 additions and temperature (~1300–1600°C) on a blast furnace type slag from the Steel Company of Canada in both homogeneous liquid and melts containing solid particles^{6–7}. The slag contained 37% SiO_2 , 35 wt% CaO, 18% MgO, 1.2% TiO_2 , 4% Al_2O_3 , 1.2% S, 0.4% MnO, 0.2% Fe and 1.3% others. Molybdenum components were used in the viscosity measurements. These measurements found that at a given temperature, addition of TiO₂ or Ti₂O₃ reduces the viscosity of the blast furnace type slags, for example the data by Xie *et al.*⁴ and Van der Colf and Howat⁵ as shown in Figure 5, and results by Handfield *et al.*^{6–7} in Figures 6 and 7. It should be mentioned that only data in fully liquid region were shown in order to make comparison with the model. Three samples each with similar chemistry were chosen and shown in Figure 5. It is noted that the data by Van der Colf and Howat⁵ are consistently lower than those by Xie *et al.*⁴ though slag chemistry of samples chosen were close to each other. ## Modelling results As mentioned above, one of the objectives of the present work was to extend the capability of CSIRO's structurally related viscosity model for multi-component silicate melts to TiO_x containing slags. This model predicts viscosity of higher order systems using only binary parameters. For example, viscosity of the CaO-TiO₂-SiO₂ system can be predicted by using parameters determined for the two CaO-SiO₂ and TiO₂-SiO₂ binaries. Details of the formulation of the model and most of the validation results can be found in elsewhere 15–17. Due to the lack of viscosity data for the binary TiO₂-SiO₂ and Ti₂O₃-SiO₂ systems, data on the CaO-TiO₂-SiO₂ ternary by Dingwell⁹ were used in determination of the model parameters for the TiO₂-SiO₂ binary. The viscosity data of the CaO-TiO₂-SiO₂⁹ and MnO-TiO₂-SiO₂¹³ systems Figure 5. Comparison between the calculated viscosity and the experimental data^{4,5} on the effect of TiO₂ addition to multicomponent blast furnace type slags Figure 6. Comparison between the calculated viscosity and the experimental data by Handfield *et al.*⁶ on the effect of TiO₂ addition to multi-component blast furnace type slags Figure 7. Comparison between the calculated viscosity and the experimental data by Handfield *et al.*⁷ on the effect of Ti₂O₃ addition to multi-component blast furnace type slags revealed that TiO_2 affects the viscosity in a similar manner to metal oxides, such as CaO and MnO, over a silica content of 0 to 0.5 mole fraction and TiO_2 up to 0.8. Based on this behaviour, TiO_2 and Ti_2O_3 were treated as network modifiers in the model. The model parameters for the TiO_2 - SiO_2 binary were used for the Ti_2O_3 - SiO_2 binary and $TiO_{1.5}$ was used as an oxide component in the model the same way as Fe_2O_3 was treated in the model¹⁶. It should be mentioned that the following comparison between modelling results and the experimental data covers only the data in homogeneous liquid region. This is because the purpose of the present paper is to validate the liquid viscosity model, though the multi-phase reaction model mentioned earlier is able to produce estimated viscosity values for solid containing melts, which combines viscosity models with the thermodynamic models to calculate equilibrium among phases¹⁸. ## **Ternary systems** Figures 1 and 2 show a comparison between the calculated viscosity and the experimental data in the CaO-TiO₂-SiO₂ and MnO-TiO₂-SiO₂ systems. Excellent agreement between the calculated viscosity and the experimental data were obtained. Figure 3 shows the agreement between the model prediction and the measurements to be close, except two compositions, i.e., at 0 and 10% TiO₂ additions and PbO/SiO₂ =1. The calculated viscosity for TiO₂ free binary PbO-SiO₂ is lower than the measured value. The model parameters for the binary system were determined by fitting data of the PbO-SiO₂ system, which were measured in the temperature range of $800-1000^{\circ}\text{C}^{19}$. The difference suggests the model may require refinement at higher temperatures. The experimental data showed that viscosity decreased continuously with TiO_2 addition at PbO/SiO₂ =1. However, the model predicted that initial addition of TiO_2 to the binary would cause viscosity to increase slightly, while further additions led to a reduction in viscosity. This can be explained as follows. When TiO_2 was added to the binary melts, there are two effects occurring. One is the dilution of SiO₂; the other is that PbO is expected to reduce viscosity more effectively than TiO₂ at a given SiO₂ mole fraction and temperature. Such an effect has been discussed previously by the present authors regarding the relative stability of oxide components^{15–17}. In other words at a given SiO₂ mole fraction, substitution of TiO₂ for PbO is expected to result in a slight increase in viscosity. The model calculation showed the decrease in viscosity caused by SiO₂ dilution to be as effective as the tendency of TiO₂ to increase viscosity at 0.1 mole fraction TiO₂. However, the dilution effect dominates with further addition of TiO₂. ## CaO-Al₂O₃-TiO₂-SiO₂ system Comparison between the calculated viscosity and the experimental data by Ohno and Ross³ and Frohberg and Weber¹⁴ in the CaO-Al₂O₃-TiO₂-SiO₂ system was carried out. It was found that the fit to the data by Ohno and Ross was within ±50% uncertainty. However, there are large discrepancies between calculated values and the data by Frohberg and Weber¹⁴. The data by Frohberg and Weber¹⁴ are systematically higher than model predictions. Due to limited space, only the comparison of modelling results with data by Ohno and Ross³ at 1500°C were presented in Figure 4. It can be seen that the model can represent the correct trend in regard to the effects of CaO/SiO₂ (wt%/wt%) ratio, Al₂O₃ level and TiO₂ additions on viscosity. The fit to the data in most cases is within 30% uncertainty. The poor fit to the data at 0 wt% Al₂O₃ implies disagreement between the data by Dingwell9 and those by Ohno and Ross³ for the ternary CaO-TiO₂-SiO₂ system. #### Blast furnace type slags The current viscosity model was used to predict viscosity of the blast furnace type slags. For convenience, the initial composition used in the model for the slags of Handfield *et al.*6-7 was 37% SiO₂, 35wt % CaO, 18% MgO, 1.2% TiO₂, 4% Al₂O₃, and 4.8% FeO. The minor components, such as S, MnO and others were added in FeO. The overall fit of the predicted viscosity values to the measured data⁴⁻⁸ for blast furnace type slag is shown in Figure 8. Figure 8. Comparison between the calculated viscosity and the experimental data^{4–8} blast furnace type slags This figure shows that the fit to most of the data is within 30% uncertainty except the data by Van der Colf and Howat⁵. As mentioned earlier, their data were consistently lower than those by Xie et al.4 for slags with similar compositions. In order to examine the accuracy of the model for different variables, the calculated viscosity are compared with the data by Xie et al.4 and Handfield et al.6-7 directly with respect to variations in temperature and TiO₂ and Ti₂O₃ additions. It should be mentioned that the model predicts continuous reduction of viscosity with addition of Ti₂O₃ as shown in Figure 7. However, Handfield et al's data⁷ showed that 15% Ti₂O₃ addition caused viscosity to decrease more so than for 20% Ti₂O₃. Further investigations may be required to clarify the behaviour in this region. The results shown in Figures 4 to 6 demonstrated the close fit to the data. Furthermore the model provides correct representation of changes in viscosity with variations in temperature and slag chemistry. ## Structural role/behaviour of TiOx The above review of experimental and modelling studies has shown that in general, additions of TiO₂ and Ti₂O₃ to silicate melts will result in decreased viscosity. It is thus reasonable to consider that TiO₂ and Ti₂O₃ predominantly act as network modifiers. There have been numerous studies on the structural role of titanium in melts and glasses, and the literature does show inconsistencies in findings. Mysen²⁶ reviewed the spectroscopic data on titania bearing glasses and noted the findings from various spectroscopic measurements tended to indicate that more than one structural position of Ti⁴⁺ might be possible. It has been also proposed²⁷ that, since the Ti⁴⁺ cation is larger than the Si⁴⁺ cation, then Ti-O-Ti and Ti-O-Al bonds are expected to be weaker than Si-O-Si and Si-O-Al bonds; thus addition of TiO₂ to highly polymerized aluminosilicate melts will decrease their viscosity. In the case of nonsilicate TiO2 containing slags, i.e., high titania slags, the viscosity measurements on the CaO(30 wt%)-TiO₂(70%) binary melt and Soreslag (FeO-TiO2 rich slags) by Handfield and Charrette²⁸ have shown that when the slags are completely molten, viscosity was as low as 0.03 Pa.s. Furthermore, the viscosity value is independent of temperature and the variation of FeO from 3.3 to 15 wt% did not seem to influence the viscosity of the Soreslag. The effect of TiO2 on viscosity of slags as discussed suggests that TiO2 acts in a similar way to other metal oxides, such as CaO or FeO. The possible variation to the coordination, namely, tetrahedral, when TiO₂ is low in silicate melts²⁶, or octahedra, in TiO2 rich slags, does not seem to alter the bonding characteristic of TiO₂. The strength of the Ti-O bonds seems to be much weaker than that of the Si-O or Al-O bonds in the melts. ## **Conclusions** The review of the published viscosity data for TiO_x containing silicate melts showed that the addition of TiO_2 and Ti_2O_3 resulted in a decrease in viscosity. The CSIRO's viscosity model was extended to TiO_x containing silicate melts by treating TiO_2 and Ti_2O_3 as network modifiers. Good agreement between the predicted and measured viscosity of ternary systems was obtained. The predictive power of the model has been demonstrated by a good fit to the measured viscosity of the blast furnace type slags. The model was able to represent effects of temperature and variations in slag compositions with respect to each component accurately. # Acknowledgements This work was financially supported by BHP Steel, OneSteel, Rio Tinto, Pasminco, Anglo Platinum, Impala Platinum, Lonmin Platinum, Kumba Resources and CSIRO Minerals, through AMIRA International. ## References - **1.** HOLMES, W.T., BANNING, L.H., and BROWN, C.C. *US Bur Mines Report*, Investigation no. 7081, 1968. - **2.** RATCHEV, I.P and BELTON, G.R. 5th Intl Conference on Molten Slags, Fluxes and Salts, 1997, pp. 387–393. - **3.** OHNO, A. and ROSS, H.U. 1963, *Can. Metall. Q.*, 1963, vol. 2(3), pp. 327–33. - **4.** XIE, D., MAO, Y., GUO, Z., and ZHU, Y. *Gangtie*, 1986, vol. 21(1), pp. 6–11. - **5.** VAN DER COLF, J. and HOWAT, D.D. *J. South Afri. Inst. Min. Metall.* 1979, (11), pp. 255–63. - **6.** HANDFIELD, G., CHARETTE, G.G., and LEE, H.Y. Light Metals, 1971, *AIME*, 1971, New York, pp. 591-601. - 7. HANDFIELD, G., CHARETTE, G.G., and LEE, H.Y. *J. Metals*, 1972, vol. 24(9), pp. 37–40. - **8.** KOZAKEVITCH, P. Rev. *Metallurg.*, 1949, vol. 9, pp. 572–82. - **9.** DINGWELL, D.B. *Am. Miner*. 1992, vol. 77, pp. 270–4. - **10.** SCHENCK, H. and FROHBERG, M.G. *Arch. Eisenhuttenw*, 1962, vol. 33, pp. 421–25. - **11.** NAKAMURA, T., MORINAGA, K. and YANAGASE, T. *Nippon Konzoku Gakkaishi*, 1977, vol. 41, pp. 1300–4. - **12.** YASUKOUCHI, T., NAKASHIMA, K., and MORI, K. *Tetsu-to-Hagané*, 1999, vol. 85, pp. 1–7. - **13.** YAGI, S., MIZOGUCHI, K., and SUGINOHARA, Y. *Bull.-Kyushu Inst. Tech. Sci. and Tech.* 1980, no. 40, pp. 33–38. - **14.** FROHBERG, M.G. and WEBER, R. *Arch. Eisenhuttenwes*, 1965, vol. 36, pp. 477–80. - **15.** ZHANG, L. and JAHANSHAHI, S. *Met. Mat. Trans. B*, 1998, vol. 29B, pp. 177–186. - **16.** ZHANG, L. and JAHANSHAHI, S. *Met. Mat. Trans. B*, 1998, vol. 29B, pp. 187–195. - **17.** ZHANG, L. and JAHANSHAHI, S. *Scand. J. Metall.*, 2001, vol. 30, pp. 364–369. - **18.** ZHANG, L., JAHANSHAHI, S., SUN, S., CHEN, C., BOURKE, B., WRIGHT, S., and SOMERVILLE, M. *JOM*, vol. 54, no. 11, 2002, pp. 51–56. - **19.** ZHANG, L. and JAHANSHAHI, S. in *5th International Conference on Molten Slags, Fluxes and Salts '97*, The Iron and Steel Society, 1997, Sydney, pp.861–71. - **20.** ZHANG, L., JAHANSHAHI, S., and HURST, H.J. Patterson, and J.H., Eighteenth Annual International - *Pittsburgh Coal Conference*, Newcastle, Australia, December 4–7, 2001, CD-ROM. - **21.** URBAIN, G., CAMBIER, F., DELETTER, M., and ANSEAU, M.R. *Trans. J. Br. Ceram. Soc.* 1981, vol.80, pp.139-41. - **22.** MIZOGUCHI, K., YAMANE, M., and SUGINOHARA, Y. 1986, *J. Japan Inst. Metals*, vol. 50, pp. 76–82. - **23.** BOCKRIS, J.O'M. and LOWE, D.C. *Proc. Roy. Soc.*, 1954, vol. A226, pp. 423–435. - **24.** LICKO, T. and DANEK, V. *Phys. Chem. Glasses*, 1986, vol. 27, pp. 22–26. - **25.** URBAIN, G., BOTTINGA, Y., and RICHET, P. *Geochim. Cosmochim. Acta*, 1982, vol. 46, pp. 1061–72. - **26.** MYSEN, B.O. Development in Geochemistry Structure and Properties of silicate melts, Elsevier, 1988. - **27.** TURKDOGAN, E.T. *Physicochemical properties of molten slags and glasses*, The Metal Society, London, 1983. - **28.** HANDFIELD, G. and CHARETTE, G.G. *Can. Met. Q.*, 1971, vol. 10(3), pp. 235–45.